MATH 116-009 QUIZ 9 / 1 Dec 2006
It may or may not be useful to note that:
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$
$(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots$

1. What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n+2}$? (3 points)
2. Suppose that the Taylor series for a function $f(x)$ is given to be $f(x)=2 x+\frac{8 x^{3}}{2!}+\frac{32 x^{5}}{4!}+\frac{128 x^{7}}{6!}+\cdots$. What are $f(0) ? f^{\prime \prime \prime}(0) ? f^{(19)}(0) ?(3$ points)
3. A wandering polar weasel meditates for 2.718 minutes and then sketches the graph to the right, which shows three functions for values of x near 0 . Astonishingly, one of these turns out to be exactly $\frac{1}{1-x^{2}}$, one $2-\cos (x)$, while the third is another function that remains anonymous to protect its identity. Which of the graphs correspond to each of the two functions specified? (4 points)

