It may or may not be useful to note that:
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \quad(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots$

1. What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n+2}$? (3 points)

Solution: We find the radius of convergence by using the ratio test. We need $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ for convergence. This limit is, in this case, $\lim _{n \rightarrow \infty}\left|\frac{3^{n+1} x^{n+1}}{n+3} \cdot \frac{n+2}{3^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|3 x \cdot \frac{n+2}{n+3}\right|$. As $n \rightarrow \infty$, the ratio $\frac{n+2}{n+3} \rightarrow 1$, so the limit is $3|x|$. We therefore need $3|x|<1$, and the radius of convergence is $R=\frac{1}{3}$.
 What are $f(0) ? f^{\prime \prime \prime}(0) ? f^{(19)}(0) ?(3$ points)

Solution: The Taylor series around $x=0$ for any function $f(x)$ is given by $f(0)+f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(0) x^{2}+\ldots$. Thus $f(0)=0$ and $f^{\prime \prime \prime}(0)=3!\left(\frac{8}{2!}\right)=24$. The nth term in the series is $\frac{2^{n} x^{n}}{(n-1)!}$, so the 19 th derivative is given by $f^{(19)}(0)=19!\left(\frac{2^{19}}{18!}\right)=19 \cdot 2^{19}$.
3. A wandering polar weasel meditates for 2.718 minutes and then sketches the graph to the right, which shows three functions for values of x near 0 . Astonishingly, one of these turns out to be exactly $\frac{1}{1-x^{2}}$, one $2-\cos (x)$, while the third is another function that remains anonymous to protect its identity. Which of the graphs correspond to each of the two functions specified? (4 points)

Solution: We know that the geometric series $\frac{1}{1-x}=1+x+$
 $x^{2}+\cdots$, so $\frac{1}{1-x^{2}}=1+x^{2}+x^{4}+\cdots$. Similarly, $\cos (x)=$ $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots$, so that $2-\cos (x)=1+\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\cdots$.
We note that both of these functions are even, so the dash-dotted graph, which is odd, is the anonymous function. Further, looking at the x^{2} terms of both of these, we see that $\frac{1}{1-x^{2}} \approx 1+x^{2}>1+\frac{x^{2}}{2} \approx$ $2-\cos (x)$, so near $x=0$ we know that $\frac{1}{1-x^{2}}>2-\cos (x)$. Thus the solid curve must be $\frac{1}{1-x^{2}}$ and the dashed one $2-\cos (x)$.

