1. Consider the differential equation $y^{\prime \prime}+k y=0$, where k is a constant. For what values of k, if any, is $y=e^{3 x}$ a solution? (3 points)

Solution: If $y=e^{3 x}$, then $y^{\prime \prime}=9 e^{3 x}$. Plugging in, we have $9 e^{3 x}+k e^{3 x}=0$. Thus $k=-9$.
2. Consider the slope field shown to the right. Let $y=f(x)$ be a solution to the corresponding differential equation that passes through the point $(0,2)$.
(a) Can $f(x)<1$? Explain.
(b) If we use Euler's method with $\Delta x=1.5$, can our approximation to y be less than 1? Explain.
(4 points)

Solution: (a) We can never have $y=f(x)<1$. This is because the slope field indicates that when $y=1$ the slope is zero. Thus if $f(x)$ decreases from its initial value of 2 to 1 it will then have the value 1
 for all larger values of x.
(b) However, we would expect that Euler's method with $\Delta x=1.5$ would give values less than 1 . At $(0,2)$ the slope appears to be approximately -1 . Thus if $\Delta x=1.5$, we would approximate $y(1.5) \approx$ $2+(1.5)(-1)=0.5$. Euler's method uses the same slope for the entire distance Δx and thus, in this case, overshoots the actual value of y.
3. Solve $t z \frac{d z}{d t}=3 t^{2}+4$. (3 points)

Solution: Separating variables, we have $z d z=\left(3 t+\frac{4}{t}\right) d t$. Integrating gives $\frac{1}{2} z^{2}=\frac{3}{2} t^{2}+4 \ln |t|+C$. Thus $z= \pm \sqrt{3 t^{2}+8 \ln |t|+C}$.

