1. Suppose that $f(x)$ is an odd function and that $\int_{-2}^{5} 3 f(x)+2 d x=23$. (a) What is $\int_{2}^{5} f(x) d x$? (b) A passing calculus fan asserts that $f(x) \geq 1$ for $2 \leq x \leq 5$; given the information in this problem, is this assertion correct? (4 points)

Solution: (a) We know that $\int_{-2}^{5} 3 f(x)+2 d x=3 \int_{-2}^{5} f(x) d x+\int_{-2}^{5} 2 d x=3 \int_{-2}^{5} f(x) d x+14$, so $3 \int_{-2}^{5} f(x) d x=9$. Then, because $f(x)$ is odd, we know that $\int_{-2}^{2} f(x) d x=0$, so $3 \int_{2}^{5} f(x) d x=9$, and $\int_{2}^{5} f(x) d x=3$. (b) The assertion is probably not correct. If $f(x)=1$ for $2 \leq x \leq 5$ then certainly $\int_{2}^{5} f(x) d x=3$. However, if $f(x)$ is not constant for this range of x-values, it must take on some values larger (and therefore also smaller) than one for the area to equal exactly three.
2. Suppose that $f^{\prime \prime}(x)$ is graphed in the figure to the right. Sketch graphs of $f^{\prime}(x)$ and $f(x)$, indicating on your graphs the locations of the points x_{1}, x_{2}, x_{3} and x_{4}. (3 points)

Solution: The graph of $f^{\prime \prime}(x)$ (the solid line), $f^{\prime}(x)$ (dashed), and $f(x)$ (dash-dotted) are shown in the figure. Note that the vertical location of $f^{\prime}(x)$ is arbitrary; three different possibilities, marked "A", "B" and "C", are shown here. The behavior of $f(x)$ does, however, depend on the location of $f^{\prime}(x)$; the corresponding graphs of $f(x)$ for the three possible $f^{\prime}(x)$ graphs are shown in the figure. Of course, the vertical location of $f(x)$ is again arbitrary.
3. Find each of the following:

(a) $\int 3 x^{3}-4 \sqrt[3]{x} d x$
(b) $\int \sin (2 y)-\frac{1}{\cos ^{2}(y)} d y$
(c) $\int \frac{(z-1)^{2}}{z^{2}} d z$

Solution:

(a) $\int 3 x^{3}-4 \sqrt[3]{x} d x=\frac{3}{4} x^{4}-3 x^{4 / 3}+C$.
(b) $\int \sin (2 y)-\frac{1}{\cos ^{2}(y)} d y=-\frac{1}{2} \cos (2 y)-\tan (y)+C$.
(c) $\int \frac{(z-1)^{2}}{z^{2}} d z=\int \frac{z^{2}-2 z+1}{z^{2}} d z=\int 1-2 z^{-1}+z^{-2} d z=z-2 \ln (|z|)-z^{-1}+C$.

