1. If $F(x)$ is an antiderivative of $f(x)=x^{2} \cos \left(1-x^{2}\right)$ with $F(0)=3$, a. give an expression for $F(x)$, and b. find $\frac{d}{d x} F(\sin (x))$. (3 points)

Solution: $F(x)=\int_{0}^{x} t^{2} \cos \left(1-t^{2}\right) d t+3$, and $\frac{d}{d x} F(\sin (x))=F^{\prime}(\sin (x)) \cdot \cos (x)=\sin ^{2}(x) \cos \left(1-\sin ^{2}(x)\right)$. $\cos (x)$. If we really wanted, we could simplify this with the trigonometric identity $\cos ^{2}(x)+\sin ^{2}(x)=1$, to $\frac{d}{d x} F(\sin (x))=\sin ^{2}(x) \cos \left(\cos ^{2}(x)\right) \cdot \cos (x)$.
2. An astute calculus student invests $P$ dollars in a bank in an account that accrues interest at a continuous rate of $r \%$ a year. Find an expression for the average amount in the student's account in the first $T$ years. (4 points)

Solution: Note that if $r$ gives a percent growth rate, then $r / 100$ gives the decimal equivalent to this. Then, if the money is invested at a continuous rate, we know that the amount in the account after $t$ years is $A(t)=P e^{r t / 100}$. Therefore the average amount in the first $T$ years is

$$
\begin{aligned}
\operatorname{avg} & =\frac{1}{T-0} \int_{0}^{T} P e^{r t / 100} d t \\
& =\frac{100 P}{r T}\left(e^{r T / 100}-1\right)
\end{aligned}
$$

3. Find exactly, using the Fundamental Theorem of Calculus: $\int_{0}^{3} x\left(x^{2}+1\right)^{-1} \ln \left(x^{2}+1\right) d x$. (3 points)

Solution: We use substitution with $w=x^{2}+1$. Then $d w=2 x d x$, or $\frac{1}{2} d w=d x, w(0)=1$, and $w(3)=10$, so

$$
\int_{0}^{3} x\left(x^{2}+1\right)^{-1} \ln \left(x^{2}+1\right) d x=\int_{1}^{10} \frac{1}{2} \frac{\ln (w)}{w} d w
$$

This is easily found using a second substitution: let $\bar{w}=\ln (w)$; then $d \bar{w}=\frac{1}{w} d w$, and (noting that $\bar{w}(1)=0$ and $\bar{w}(10)=\ln (10))$

$$
\begin{aligned}
\int_{1}^{10} \frac{1}{2} \frac{\ln (w)}{w} d w & =\int_{0}^{\ln (10)} \frac{1}{2} \bar{w} d \bar{w} \\
& =\left.\frac{1}{4} \bar{w}^{2}\right|_{0} ^{\ln (10)}=\frac{1}{4}(\ln (10))^{2}
\end{aligned}
$$

We can also do this with a single substitution if we notice that $w=\ln \left(x^{2}+1\right)$ is a good substitution. Then $d w=2 x\left(x^{2}+1\right)^{-1} d x, w(0)=0, w(3)=\ln (10)$, and we end up immediately with the integral in $\bar{w}$ that we found above.

