The following may or may not be useful things to know.
$\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C, a \neq 0 \quad \int \frac{b x+c}{x^{2}+a^{2}} d x=\frac{b}{2} \ln \left|x^{2}+a^{2}\right|+\frac{c}{a} \arctan \left(\frac{x}{a}\right)+C, a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+C, a \neq 0 \quad \int \frac{1}{(x-a)(x-b)} d x=\frac{1}{b-a}(\ln |x-a|-\ln |x-b|)+C, a \neq b$
$\int \frac{1}{\sqrt{x^{2} \pm a^{2}}} d x=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C \quad \int \sqrt{a^{2} \pm x^{2}} d x=\frac{1}{2}\left(x \sqrt{a^{2} \pm x^{2}}+a^{2} \int \frac{1}{a^{2} \pm x^{2}} d x\right)+C$

1. An alert University of Michigan squirrel (major: undecided, but leaning towards math) notices that the rate at which students in calculus II pass a gateway test is given by $r(t)=\frac{2 k e^{k t}}{\left(1+e^{k t}\right)^{2}}$ (in $\% /$ day after the test opens), where k is a positive constant that depends on what section of the course the students are in. Find the percent of students who have passed after t days. What happens to this as $t \rightarrow \infty$? (3 points)
2. The second cousin of our mathematically inclined squirrel wants to get a piece of the action. "Given the graphs of $f(x)$ and $g(x)$, below," she says, "you can find $\int_{1}^{4} f(x) \cdot g^{\prime}(x) d x$ in at least two different ways."

Find the value of this integral in two different ways. (4 points)
3. Find $\int \frac{1}{x^{2}+5 x+6} d x$ by using partial fractions. (3 points)

