The following may or may not be useful things to know.

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin(\frac{x}{a}) + C, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin(\frac{x}{a}) + C, \ a \neq 0$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x + \sqrt{x^2 \pm a^2}| + C$$

$$\int \frac{1}{\sqrt{a^2 \pm x^2}} dx = \frac{1}{2} (x\sqrt{a^2 \pm x^2} + a^2) \int \frac{1}{a^2 \pm x^2} dx = \frac{1}{2} (x\sqrt{a^2 \pm x^2} + a^2) \int \frac{1}{a^2 \pm x^2} dx + C$$

1. An alert University of Michigan squirrel (major: undecided, but leaning towards math) notices that the rate at which students in calculus II pass a gateway test is given by $r(t) = \frac{2ke^{kt}}{(1+e^{kt})^2}$ (in %/day after the test opens), where k is a positive constant that depends on what section of the course the students are in. Find the percent of students who have passed after t days. What happens to this as $t \to \infty$? (3) points)

2. The second cousin of our mathematically inclined squirrel wants to get a piece of the action. "Given the graphs of f(x) and g(x), below," she says, "you can find $\int_1^4 f(x) \cdot g'(x) dx$ in at least two different ways."

Find the value of this integral in two different ways. (4 points)

3. Find $\int \frac{1}{x^2+5x+6} dx$ by using partial fractions. (3 points)