The following may or may not be useful things to know.
$\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C, a \neq 0 \quad \int \frac{b x+c}{x^{2}+a^{2}} d x=\frac{b}{2} \ln \left|x^{2}+a^{2}\right|+\frac{c}{a} \arctan \left(\frac{x}{a}\right)+C, a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+C, a \neq 0 \quad \int \frac{1}{(x-a)(x-b)} d x=\frac{1}{b-a}(\ln |x-a|-\ln |x-b|)+C, a \neq b$
$\int \frac{1}{\sqrt{x^{2} \pm a^{2}}} d x=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C \quad \int \sqrt{a^{2} \pm x^{2}} d x=\frac{1}{2}\left(x \sqrt{a^{2} \pm x^{2}}+a^{2} \int \frac{1}{a^{2} \pm x^{2}} d x\right)+C$

1. An alert University of Michigan squirrel (major: undecided, but leaning towards math) notices that the rate at which students in calculus II pass a gateway test is given by $r(t)=\frac{2 k e^{k t}}{\left(1+e^{k t}\right)^{2}}$ (in $\% /$ day after the test opens), where k is a positive constant that depends on what section of the course the students are in. Find the percent of students who have passed after t days. What happens to this as $t \rightarrow \infty$? (3 points)

Solution: The total number of students passing the gateway is the integral of the rate, so $N=$ $\int_{0}^{t} \frac{2 k e^{k x}}{\left(1+e^{k x}\right)^{2}} d x$. With $w=1+e^{k x}, d w=k e^{k x} d x$, this is

$$
N=\int_{0}^{t} \frac{2 k e^{k x}}{\left(1+e^{k x}\right)^{2}} d x=\int_{2}^{1+e^{k t}} \frac{2}{w^{2}} d w=-\left.\frac{2}{w}\right|_{2} ^{1+e^{k t}}=1-\frac{2}{1+e^{k t}}
$$

Thus, as $t \rightarrow \infty, N \rightarrow 1$, which is reassuring- 100% of students eventually pass, given enough time!
2. The second cousin of our mathematically inclined squirrel wants to get a piece of the action. "Given the graphs of $f(x)$ and $g(x)$, below," she says, "you can find $\int_{1}^{4} f(x) \cdot g^{\prime}(x) d x$ in at least two different ways."

Find the value of this integral in two different ways. (4 points)

Solution: Method 1: Because $g(x)$ is piecewise linear, we can find $g^{\prime}(x)$ for each of the regions $1<x<2$ and $2<x<4$. In the first, $g^{\prime}(x)=-3$, and in the second $g^{\prime}(x)=2$. Thus the integral is the same as $\int_{1}^{2}-3 f(x) d x+\int_{2}^{4} 2 f(x) d x$. The area under $f(x)$ for $1<x<2$ is 2 , and for $2<x<4$ is 6 , so $\int_{1}^{2} f(x) \cdot g^{\prime}(x) d x=-3(2)+1(6)=0$.
Method 2: Using Integration by Parts, we have $\int_{1}^{4} f(x) \cdot g^{\prime}(x) d x=f(4) g(4)-f(1) g(1)-\int_{1}^{4} f^{\prime}(x) \cdot g(x) d x$. This gives $\int_{1}^{4} f(x) \cdot g^{\prime}(x) d x=(3)(3)-(1)(4)-\int_{1}^{4} f^{\prime}(x) \cdot g(x) d x$. Noting that $f^{\prime}(x)=2$ for $1<x<2$ and $f^{\prime}(x)=0$ for $2<x<4$, this becomes $\int_{1}^{4} f(x) \cdot g^{\prime}(x) d x=5-\int_{1}^{2} 2 g(x) d x=5-2(2.5)=0$.
3. Find $\int \frac{1}{x^{2}+5 x+6} d x$ by using partial fractions. (3 points)

Solution: First, we rewrite the integrand $\frac{1}{x^{2}+5 x+6}\left(=\frac{1}{(x+2)(x+3)}\right)$ as a sum of two terms: $\frac{1}{x^{2}+5 x+6}=$ $\frac{A}{x+2}+\frac{B}{x+3}$. Multiplying through by $x^{2}+5 x+6$, we get $1=(A+B) x+(3 A+2 B)$, so that $A+B=0$ and $3 A+2 B=1$. Thus $A=1$ and $B=-1$, so that $\int \frac{1}{x^{2}+5 x+6} d x=\int \frac{1}{x+2}-\frac{1}{x+3} d x=\ln |x+2|-\ln |x+3|+C$.

