1. The integral $\int_{0}^{1} \frac{\pi}{\sqrt{x}} d x$ gives the volume of the solid created when the curve $y=\frac{1}{\sqrt[4]{x}}$, for $0<x \leq 1$, is rotated around the x-axis. Find analytically (by hand) the volume of this object. (3 points)

Solution: This integral is improper because the integrand, $\frac{1}{\sqrt{x}}$, is undefined at the left endpoint of the interval, $x=0$. So we proceed by integrating to a point bounded away from zero and then taking the limit as that goes to zero.

$$
\begin{aligned}
\int_{0}^{1} \frac{\pi}{\sqrt{x}} d x & =\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \pi x^{-1 / 2} d x \\
& =\left.\lim _{a \rightarrow 0^{+}} 2 \pi x^{1 / 2}\right|_{a} ^{1} \\
& =\lim _{a \rightarrow 0^{+}} 2 \pi(1-\sqrt{a}) .
\end{aligned}
$$

As $a \rightarrow 0^{+}$, this clearly converges to 2π.
2. Have you passed the integral gateway? (Check one.) \square yes; \square no. If no, when will you be going to the lab to take it? \qquad (1 point)

Solution: Answers will vary.
3. Carefully explain, without working out the integral, whether $\int_{1}^{\infty} \frac{e^{x}}{1+e^{x}} d x$ converges. (3 points)

Solution: We note that for $x \geq 0, \frac{e^{x}}{1+e^{x}}>\frac{e^{x}}{e^{x}+e^{x}}=\frac{1}{2}$. Clearly $\int_{1}^{\infty} \frac{1}{2} d x=\lim _{b \rightarrow \infty} \frac{1}{2}(b-1)$ diverges, and therefore $\int_{1}^{\infty} \frac{e^{x}}{1+e^{x}} d x$ must, being larger, also diverge.
4. An overly enthusiastic math professor moves along a path given by $x(t)=t \cos (t), y(t)=t \sin (t)$. Is the professor ever at the point $(1,0)$ (if so, when)? Is the professor's speed increasing or decreasing? At an increasing or decreasing rate? (3 points)

Solution: The professor will be at the point (1,0) if there is a t for which $t \cos (t)=1$ and $t \sin (t)=0$. The second of these requires that $t=0$ or $t=n \pi, n$ an integer. If $t=0$ the first equation is clearly not satisfied. If $t=n \pi$, we get $(n \pi)(\pm 1)=1$, which is again clearly not true. Thus the professor is never at the point $(1,0)$.

The professor's speed is given by

$$
\begin{aligned}
|v| & =\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{(\cos (t)-t \sin (t))^{2}+(\sin (t)+t \cos (t))^{2}} \\
& =\sqrt{\cos ^{2}(t)-2 t \cos (t) \sin (t)+t^{2} \sin ^{2}(t)+\sin ^{2}(t)+2 t \cos (t) \sin (t)+t^{2} \cos ^{2}(t)}
\end{aligned}
$$

Using the identity $\cos ^{2}(t)+\sin ^{2}(t)=1$, this is $|v|=\sqrt{1+t^{2}}$, which is clearly an increasing function. In addition, $|v|^{\prime}=\frac{t}{\sqrt{1+t^{2}}}$ and

$$
|v|^{\prime \prime}=\frac{\sqrt{1+t^{2}}-\frac{t^{2}}{\sqrt{1+t^{2}}}}{1+t^{2}}=\frac{1+t^{2}-t^{2}}{\left(1+t^{2}\right)^{3 / 2}}=\frac{1}{\left(1+t^{2}\right)^{3 / 2}}>0
$$

so it is increasing at an increasing rate.

