1. A long shed is created by constructing a front frame with the shape $y=H \sin (x)$, for $0 \leq x \leq \pi \mathrm{m}$, and extending this shape with a length $L$. Sketch the shed and a representative slice that you could use to find the volume by integration. Set up the integral and find the volume of the shed. ( 3 points)
2. One model for the shape of a space station is a donut shape that spins, so that in the ring there is a perceived "gravity" pulling outwards. Suppose that such a space station is given by the graph of $(x-3)^{2}+y^{2}=1$ (where all units are, of course, "space station length units," sslus), rotated around the $y$-axis. Set up an integral to find the volume enclosed by such a space station. (3 points)
3. Sketch the graphs of the curves given in polar coordinates by $r=1+\sin (\theta)$ and $r=\sin (\theta)$. If we want to find the area inside $r=1+\sin (\theta)$ but outside of $r=\sin (\theta)$, sketch an appropriate "slice." Set up an integral to find this area. (3 points)
