1. A long shed is created by constructing a front frame with the shape $y=H \sin (x)$, for $0 \leq x \leq \pi \mathrm{m}$, and extending this shape with a length L. Sketch the shed and a representative slice that you could use to find the volume by integration. Set up the integral and find the volume of the shed. (3 points)

Solution: The shed is shown in the figure to the right, along with a representative slice taken a distance x from the left edge of the shed. The volume of the slice is $V_{s l}=L \cdot H \sin (x) \cdot \Delta x$, so that the total volume of the shed is given by $\int_{0}^{\pi} L \cdot H \sin (x) d x=2 L H \mathrm{~m}^{3}$.

2. One model for the shape of a space station is a donut shape that spins, so that in the ring there is a perceived "gravity" pulling outwards. Suppose that such a space station is given by the graph of $(x-3)^{2}+y^{2}=1$ (where all units are, of course, "space station length units," sslus), rotated around the y-axis. Set up an integral to find the volume enclosed by such a space station. (3 points)

Solution: The "space station" and its $x y$-cross section are shown in the figures to the right. If we cut the volume up with horizontal slices, then we get washers with an inside radius of $x=3-\sqrt{1-y^{2}}$ and outside radius $x=3+\sqrt{1-y^{2}}$. Thus the volume of the station is

$$
\begin{aligned}
V & =\int_{-1}^{1} \pi\left(3+\sqrt{1-y^{2}}\right)^{2}-\pi\left(3-\sqrt{1-y^{2}}\right)^{2} d y \\
& =\int_{-1}^{1} 12 \pi \sqrt{1-y^{2}} d y
\end{aligned}
$$

We could evaluate this by trigonometric substitution or numerically, to get $V=12 \pi^{2}(\approx 118.44) \mathrm{sslu}^{3}$.

3. Sketch the graphs of the curves given in polar coordinates by $r=1+\sin (\theta)$ and $r=\sin (\theta)$. If we want to find the area inside $r=1+\sin (\theta)$ but outside of $r=\sin (\theta)$, sketch an appropriate "slice." Set up an integral to find this area. (3 points)

Solution: The two curves are shown to the right. The slice has angular width $\Delta \theta$. The area inside the inner circle is therefore given by $A_{c i}=\int_{0}^{\pi} \frac{1}{2} \sin ^{2} \theta d \theta=\frac{\pi}{4}$ (which makes pretty good sense, given that it's a circle of radius $\frac{1}{2}$). The area inside the cardioid is $A_{c a}=\int_{0}^{2 \pi} \frac{1}{2}(1+\sin \theta)^{2} d \theta=\frac{3 \pi}{2}$, so the area between the two is $A=\frac{3 \pi}{2}-\frac{\pi}{4}=\frac{5 \pi}{4}$. Of course, if we were just setting up the integral, we could stop with saying $A=\int_{0}^{\pi} \frac{1}{2} \sin ^{2} \theta d \theta-\int_{0}^{2 \pi} \frac{1}{2}(1+\sin \theta)^{2} d \theta$.

