1. A somewhat questionable model for the mass distribution of a truck or SUV is the following: the SUV is a rectangular solid 8 ft wide by 5 ft tall by 12 ft long, 1 ft above the ground (because of its wheels, of course - note that this essentially says that the SUV extends from the ground to a height of 6 ft , but has zero mass for the lowest 1 ft). This is shown in the figure to the right. Suppose that the density of the truck is approximately $\delta(y)=$ $\frac{20}{3}(6-y) \mathrm{lbs} / \mathrm{ft}^{3}$, where y is the distance up from the ground. If the weight of the truck is 8000 lbs , find its y-center of mass. (4 points)

2. Find the work required to empty a cylindrical tank, standing on one of its circular ends, with radius $r=2 \mathrm{~m}$ and height $h=4 \mathrm{~m}$ if it is initially half full of water (mass $1000 \mathrm{~kg} / \mathrm{m}^{3}$; use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$). (4 points)
3. True or false (explain in one sentence): If $f(t)$ is a density function such that $f(t) \Delta t$ gives the fraction of the U.S. population having taken between t and $t+\Delta t$ years of math classes, then $\int_{13}^{\infty} f(t) d t \geq 0.50$. (2 points)
