1. A somewhat questionable model for the mass distribution of a truck or SUV is the following: the SUV is a rectangular solid 8 ft wide by 5 ft tall by 12 ft long, 1 ft above the ground (because of its wheels, of course - note that this essentially says that the SUV extends from the ground to a height of 6 ft , but has zero mass for the lowest 1 ft). This is shown in the figure to the right. Suppose that the density of the truck is approximately $\delta(y)=$ $\frac{20}{3}(6-y) \mathrm{lbs} / \mathrm{ft}^{3}$, where y is the distance up from the ground. If the weight of the truck is 8000 lbs , find its y-center of mass. (4 points)

Solution: The y-center of mass is moment $\int_{1}^{6} y \cdot \delta(y) \cdot a(y) d y$, where $a(y)$ is the area of a horizontal cross-section of the truck, divided by the mass (weight). Thus

$$
\begin{aligned}
\bar{y} & =\frac{\int_{1}^{6} y \cdot\left(\frac{20}{3}(6-y)\right) \cdot 8 \cdot 12 d y}{8000} \\
& =\frac{640}{8000} \int_{1}^{6} 6 y-y^{2} d y=\frac{8}{3} \mathrm{ft}
\end{aligned}
$$

2. Find the work required to empty a cylindrical tank, standing on one of its circular ends, with radius $r=2 \mathrm{~m}$ and height $h=4 \mathrm{~m}$ if it is initially half full of water (mass $1000 \mathrm{~kg} / \mathrm{m}^{3}$; use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$). (4 points)

Solution: We slice the tank horizontally into slices of thickness Δy, where y is the height measured from the bottom of the tank. Then the weight of a slice is $w_{s l}=\left(\pi r^{2} \Delta y\right)(9800)=39,200 \pi \Delta y$. The slice has to be lifted a height $h=4-y$, so the total work is $\int_{0}^{2} 39,200 \pi(4-y) d y=235,200 \pi \mathrm{~J}$. Or, approximately, 738,903 J.
3. True or false (explain in one sentence): If $f(t)$ is a density function such that $f(t) \Delta t$ gives the fraction of the U.S. population having taken between t and $t+\Delta t$ years of math classes, then $\int_{13}^{\infty} f(t) d t \geq 0.50$. (2 points)

Solution: This is probably false. $\int_{13}^{\infty} f(t) d t$ gives the fraction of the population that has had in excess of 13 years of mathematics classes, so for it to be greater than 0.5 would require that over 50% of the entire population to have completed college-level mathematics... assuming that they had math for 12 years in K-12. Even if a majority of the U.S. population goes to college, it seems unlikely that the fraction of this population that takes math will add up to 50% of the entire U.S.

