1. Give an explicit formula for a sequence s_{n} which has properties that $s_{1}=2, \lim _{n \rightarrow \infty} s_{n}=1$, and $s_{n}<1$ for some values of n. What are the first four terms in your sequence? (4 points)
2. A daring calculus-loving student leaps from a tree-house located 15 feet above the surface of a trampoline. She then bounces on the trampoline 10 times, attaining a height after each bounce that is $\frac{1}{2}$ her previous height. (a) write a series giving the total vertical distance she travels after the first bounce from the trampoline (assume that she comes to a stop upon landing on the trampoline for the 10th time), and (b) determine its sum. (4 points)
3. Give an integral that could be used to test the convergence of $\sum_{n=0}^{\infty}(n-2) e^{-(n-2)}$. Without evaluating the integral, how would it tell you if the series converges or not? (3 points)
