1. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(n!)^2 (x-3)^n}{(2n+1)!}$. What are the endpoints of the interval of convergence? How would you know if the series converged at the endpoints (do not actually test this)? (4 points)

2. Suppose that the following table gives points on the function f(x). If $P_2 = a + bx + cx^2$ is the second degree Taylor polynomial for f(x) about x = 0, (a) are a, b and c positive or negative?, and (b) what are (reasonable estimates for) a and b? (3 points)

$$\begin{array}{c|cccc} x & -0.15 & 0 & 0.15 \\ \hline f(x) & 3.125 & 3.25 & 3.55 \\ \end{array}$$

3. Find an expression for the general term of the Taylor series $\sin(x)\cos(x) = \frac{x}{2} - \frac{x^3}{2(3!)} + \frac{x^5}{2(5!)} - \frac{x^7}{2(7!)} + \cdots$ and give the starting value of the index (n). (3 points)