Possibly useful formulae (all series around $x=0$): $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} ; e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} ; \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$; $\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} ;$ and $(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots$.

1. Use Taylor series to determine which of $f(z)=\sin \left(z^{2}\right)$ or $g(z)=z\left(e^{z}-1\right)$ is smaller near $z=0$ (consider $z>0$). (3 points)
2. Find a value of r for which $y=x^{r}$ is a solution to the differential equation $x^{2} y^{\prime \prime}-2 y=0$. (3 points)
3. On the slope field for the differential equation $\frac{d y}{d x}=(y+1) \sin (x)$ shown below, (a) sketch the solution to the differential equation that passes through $(0,0.25)$, and (b) sketch the Euler solution to this differential equation, starting at $y(0)=0.25$ and using a step size of $\Delta x=0.25$, that finds $y(1)$. Note that you do not need to actually calculate the Euler method solution for (b)! (4 points)

