Possibly useful formulae (all series around $x=0$): $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} ; e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} ; \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$; $\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} ;$ and $(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots$.

1. Use Taylor series to determine which of $f(z)=\sin \left(z^{2}\right)$ or $g(z)=z\left(e^{z}-1\right)$ is smaller near $z=0$ (consider $z>0)$. (3 points)

Solution: We know that $\sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots$, so $\sin \left(z^{2}\right)=z^{2}-\frac{z^{6}}{3!}+\cdots$. Similarly, $e^{z}=$ $1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots$, so $z\left(e^{z}-1\right)=z^{2}+\frac{z^{3}}{2!}+\cdots$. For small z, therefore, both of these look like the parabola z^{2}. However, looking at higher order terms, the exponential $g(z)$ is increased by $\frac{z^{3}}{2!}$ while $f(z)$ is decreased by $\frac{z^{6}}{3!}$. Thus the latter is smaller.
2. Find a value of r for which $y=x^{r}$ is a solution to the differential equation $x^{2} y^{\prime \prime}-2 y=0$. (3 points)

Solution: With $y=x^{r}$, we know that $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Thus, plugging $y^{\prime \prime}$ into the differential equation, we must have

$$
\begin{aligned}
\left(x^{2}\right)\left(r(r-1) x^{r-2}\right)-2 x^{r} & =0, \text { or } \\
r(r-1) x^{r}-2 x^{r} & =0 .
\end{aligned}
$$

This is $\left(r^{2}-r-2\right) x^{r}=0$, so, if this is to work for all values of $x, r^{2}-r-2=0$. This factors as $(r-2)(r+1)=0$, so $r=2$ or $r=-1$ work. Solutions are $y=x^{2}$ or $y=x^{-1}$.
3. On the slope field for the differential equation $\frac{d y}{d x}=(y+1) \sin (x)$ shown below, (a) sketch the solution to the differential equation that passes through $(0,0.25)$, and (b) sketch the Euler solution to this differential equation, starting at $y(0)=0.25$ and using a step size of $\Delta x=0.25$, that finds $y(1)$. Note that you do not need to actually calculate the Euler method solution for (b)! (4 points)

Solution: Shown (the smooth curve is the solution, piecewise linear, Euler).

