1. A calculus student is racing to get to the gateway lab to start taking the Entrance Gateway at the instant the doors open. The student's velocity, $v(t)$ (in m / s) is shown in the graph to the right for $0 \leq t \leq 8$ seconds. Write an integral that gives the distance the student travels in those 8 sec , and estimate this distance. (3 points)

2. Consider the integral $\int_{0}^{3 \pi / 2} 1+\sin (x) d x$. Let $\operatorname{LHS}(n)$ and $\operatorname{RHS}(n)$ be, respectively, the left- and righthand sums with n subdivisions approximating this integral. By looking at a graph (-not by evaluating them), place in increasing order the following quantities: LHS (3), $\operatorname{RHS}(1)$, and $\int_{0}^{3 \pi / 2} 1+\sin (x) d x$. (3 points)
3. Find each of the following derivatives (you need not simplify your answers). (4 points)
a. $\frac{d}{d x}\left(3 x \sin \left(x^{2}+1\right)\right)$
b. $\frac{d}{d t}\left(\frac{e^{2 t}}{\ln (t)}\right)$
