1. The following two statements are false. Explain, without any calculation, why they are false. (4 points)
a. $\int_{-1}^{0} e^{-x^{2}} d x=-0.746824$
b. $\int_{-1}^{1} x e^{-x^{2}} d x=0.632121$

Solution: a. We know that $e^{-x^{2}}$ is a positive function, so the area between the graph of the function and the x-axis must lie above the x-axis, and the integral must therefore be positive.
b. We know that $x e^{-x^{2}}$ is an odd function, so the integral from -1 to 1 must be zero.
2. Suppose that the function f is shown in the figure to the right. If $F^{\prime}=f$ and $F(0)=-1$, carefully sketch a graph of $F(x)$ for $0 \leq x \leq 4$. (3 points)

Solution: We know that $F(0)=-1$, and that from $x=0$ to $x=1$ its slope is a constant (2). From $x=1$ to $x=2, F(x)$ must continue to increase from $(1,1)$ to $(2,2)$ (because the area under $f(x)$ is one), and its slope must decrease to zero. From $x=2$ to $x=3$ it decreases by one-half to ($3, \frac{3}{2}$) and the slope decreases from zero to -1 . From $x=3$ to $x=4$ the slope is a constant -1 . This is shown in the figure to the right, below.

3. If the average value of $f(x)=9 x^{2}$ on the interval $0 \leq x \leq b$ is 48 , what is b ? (3 points)

Solution: The average value we want is $\frac{1}{b-0} \int_{0}^{b} 9 x^{2} d x=\left.\frac{1}{b}\left(3 x^{3}\right)\right|_{0} ^{b}=3 b^{2}$. Thus we need $3 b^{2}=48$, so $b^{2}=16$ and $b= \pm 4$.

