1. Find, by hand: $\int \frac{e^{x}}{4 e^{2 x}-1} d x$. (3 points)

Solution: Note that we can factor the denominator of the integrand: $\int \frac{e^{x}}{4 e^{2 x}-1} d x=\int \frac{e^{x}}{\left(2 e^{x}+1\right)\left(2 e^{x}-1\right)} d x$. Thus substituting $w=e^{x}$ (so that $d w=e^{x} d x$) reduces this to a simple fraction:

$$
\int \frac{e^{x}}{\left(2 e^{x}+1\right)\left(2 e^{x}-1\right)} d x=\int \frac{d w}{(2 w+1)(2 w-1)}
$$

We can simplify this with partial fractions. Taking $\frac{1}{(2 w+1)(2 w-1)}=\frac{A}{(2 w+1)}+\frac{B}{(2 w-1)}$, we have $1=$ $(2 w-1) A+(2 w+1) B$. Then, if $w=\frac{1}{2}, B=\frac{1}{2}$, and if $w=-\frac{1}{2}, A=-\frac{1}{2}$. Thus

$$
\int \frac{d w}{(2 w+1)(2 w-1)}=-\frac{1}{2} \int \frac{d w}{2 w+1}+\frac{1}{2} \int \frac{d w}{2 w-1}=-\frac{1}{4} \ln |2 w+1|+\frac{1}{4} \ln |2 w-1|+C
$$

Back-substituting for w, we have $\int \frac{e^{x}}{4 e^{2 x}-1} d x=-\frac{1}{4} \ln \left(2 e^{x}+1\right)+\frac{1}{4} \ln \left|2 e^{x}-1\right|+C$. (Note that the absolute values are not necessary for the first term because $2 e^{x}+1>0$.)
2. For each of the following integrals, indicate which of substitution, integration by parts, long division, partial fractions, a table of integrals, or no method would be the logical first step toward finding the integral. Do not find any of these integrals. (3 points)
a. $\int \arctan (x) d x$
b. $\int \frac{1}{3+(2 z+1)^{2}} d z$
c. $\int \frac{\cos (\sqrt{x})}{\sqrt{x}} d x$

Solution: (a.): We don't know how to antidifferentiate $\arctan (x)$, and it isn't on our table of integrals, but we do know how to differentiate it $\left(\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}\right)$, so the most logical choice is to use integration by parts with $u=\arctan (x)$ and $v^{\prime}=1$.
(b.): The most logical choice here is substitution with $w=2 z+1$ (or $w=\frac{2 z+1}{\sqrt{3}}$), followed by use of a table (or recognition of the integral as an arctangent).
(c.): Here we should clearly use substitution with $w=\sqrt{x}$, because we then have $2 d w=\frac{1}{\sqrt{x}} d x$, which is in the integral as well.
3. An enterprising calculus student, intrigued by the amount of fun that her calculus class is having, does a careful investigation of the joy, J, being experienced by the class during a typical class period. The graph gives J (in deleriums/hour, the usual unit) for the 1.5 hour class period. Estimate with $\operatorname{MID}(3)$ the total number of deleriums of joy experienced by the class. Is your estimate an over- or under-estimate? (4 points)

Solution: The total joy is given by $\int_{0}^{1.5} J(t) d t$, which we can estimate with MID(3) by reading values from the graph:

$$
\int_{0}^{1.5} J(t) d t \approx(0.5)(2+3+3.5)=4.25 \text { deleriums }
$$

Because the graph is concave down we know that the midpoint approximation is an overestimate.

