1. Find the interval of convergence of the series

$$
1+\frac{x}{\ln (2)+1}+\frac{4 x^{2}}{\ln (3)+1}+\frac{9 x^{3}}{\ln (4)+1}+\frac{16 x^{4}}{\ln (5)+1}+\frac{25 x^{5}}{\ln (6)+1}+\cdots
$$

Solution: The nth term (after $n=0)^{\dagger}$ in the series is $a_{n}=\frac{n^{2} x^{n}}{\ln (n+1)+1}$, so the ratio test gives

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} x^{n+1}}{\ln (n+2)+1} \cdot \frac{\ln (n+1)+1}{n^{2} x^{n}}\right|=\lim _{n \rightarrow \infty}|x| \cdot \frac{(n+1)^{2}(\ln (n+2)+1)}{n^{2}(\ln (n+1)+1)}=|x| .
$$

For convergence, the ratio test requires that this be less than one, so $|x|<1$ (the radius of convergence is one), and the interval of convergence is at least $-1<x<1$. At $x= \pm 1$, the series is $\sum \frac{(\pm 1)^{n} n^{2}}{\ln (n+1)+1}$, which clearly diverges because the terms do not go to zero. Thus the interval of convergence is $-1<x<1$.
2. Find the Taylor polynomial of degree 3 for the function $f(x)=e^{2 x}$ near the point $a=1$. (3 points)

Solution: We have $f(x)=e^{2 x}$, so $f^{(n)}(x)=2^{n} e^{2 x}$. Thus $f(1)=e^{2}$, and $f^{(n)}(1)=2^{n} e^{2}$. The Taylor polynomial is $P_{3}(x)=f(1)+f^{\prime}(1) \cdot(x-1)+\frac{1}{2!} f^{\prime \prime}(1) \cdot(x-1)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(1) \cdot(x-1)^{3}$, so

$$
P_{3}(x)=e^{2}+2 e^{2}(x-1)+2 e^{2}(x-1)^{2}+\frac{4}{3} e^{2}(x-1)^{3}
$$

3. If a function $g(x)$ is approximated near zero by the fourth degree Taylor polynomial $P_{4}(x)=3-2 x^{2}-x^{4}$, what are $g(0), g^{\prime \prime \prime}(0)$ and $g^{(4)}(0)$?

Solution: We know that $P_{4}(x)=g(0)+g^{\prime}(0) \cdot x+\frac{1}{2!} g^{\prime \prime}(0) \cdot x^{2}+\frac{1}{3!} g^{\prime \prime \prime}(0) \cdot x^{3}+\frac{1}{4!} g^{(4)}(0) \cdot x^{4}$, so

$$
g(0)=3, \quad g^{\prime \prime \prime}(0)=0, \quad \text { and } \quad g^{(4)}(0)=-4!=-24 .
$$

[^0]
[^0]: \dagger Note that because convergence is unaffected by a finite number of leading terms we can ignore the zeroth term when finding convergence.

