1. Find the first three non-zero terms, and the general term, of the Taylor series of $f(x)=\frac{1}{1+3 x}$ around $x=1$ (not around $x=0$).
(3 points)
2. Recall that $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$. Use the Taylor series for $\frac{1}{1-x}$ (around $x=0$) to find the Taylor series for $\arctan (x)$. Without calculating it, what would you expect the radius of convergence of your new series to be?
3. For what values of n, if any, is $y=x^{n}$ a solution to the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-2 y=0$? (3 points)
