1. Find the first three non-zero terms, and the general term, of the Taylor series of $f(x)=\frac{1}{1+3 x}$ around $x=1($ not around $x=0)$.

Solution: We have $f^{\prime}(x)=\frac{-3}{(1+3 x)^{2}}, f^{\prime \prime}(x)=\frac{3^{2} \cdot 2}{(1+3 x)^{3}}, f^{\prime \prime \prime}(x)=\frac{-3^{3} \cdot 2 \cdot 3}{(1+3 x)^{4}}$, and so on, so that $f^{(n)}(x)=$ $\frac{(-3)^{n} \cdot n!}{(1+3 x)^{n}}$. Evaluating at $x=1$, we have $f(1)=\frac{1}{4}, f^{\prime}(1)=\frac{-3}{4^{2}}, f^{\prime \prime}(1)=\frac{3^{2} \cdot 2}{4^{3}}$, and so on, with $f^{(n)}(1)=$ $\frac{(-3)^{n} \cdot n!}{4^{n+1}}$. Thus the Taylor series is

$$
\begin{aligned}
\frac{1}{1+3 x} & =\frac{1}{4}+\frac{-3}{16}(x-1)+\frac{9}{64}(x-1)^{2}-\cdots+\frac{(-3)^{n}}{4^{n+1}}(x-1)^{n}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-3)^{n}}{4^{n+1}}(x-1)^{n}
\end{aligned}
$$

2. Recall that $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$. Use the Taylor series for $\frac{1}{1-x}$ (around $x=0$) to find the Taylor series for $\arctan (x)$. Without calculating it, what would you expect the radius of convergence of your new series to be?
(4 points)

Solution: Because $\frac{1}{1-x}=1+x+x^{2}+\cdots$, we have $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-\cdots$. Integrating, we find $\arctan (x)=C+x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots+\frac{(-1)^{n}}{2 n+1} x^{2 n+1}+\cdots$. Then $\arctan (0)=0$, so $C=0$, and we have

$$
\begin{aligned}
\arctan (x) & =x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots+\frac{(-1)^{n}}{2 n+1} x^{2 n+1}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
\end{aligned}
$$

Because the radius of convergence of $\frac{1}{1-x}$ is one, and because when $-1<x<1$ we know $0<x^{2}<1$, we expect the radius of convergence of the expansion for $\arctan (x)$ to be one as well.
3. For what values of n, if any, is $y=x^{n}$ a solution to the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-2 y=0$? (3 points)

Solution: If $y=x^{n}$, then $\frac{d y}{d x}=n x^{n-1}$ and $\frac{d^{2} y}{d x^{2}}=n(n-1) x^{n-2}$. Plugging in, we therefore have

$$
x^{2}\left(n(n-1) x^{n-2}\right)-2 x^{n}=\left(n^{2}-n\right) x^{n}-2 x^{n}=(n-2)(n+1) x^{n}=0
$$

This is true for all x if $n=2$ or $n=-1$. Thus $y=x^{2}$ and $y=x^{-1}$ are solutions to the differential equation.

