1. Recall that the Taylor series for $\sin(x)$ is $\sum \frac{(-1)^n x^{2n+1}}{(2n+1)!}$. Find the Taylor series for $\operatorname{Si}(x) = \int_0^x \frac{\sin(t)}{t} dt$. (3 points)

- 2. Suppose that we know that $\frac{dy}{dx} = f(y)$ for some function f(y). Also suppose that we approximate the solution to this differential equation, with initial condition y(0) = 0, with Euler's method and $\Delta x = 0.5$. If we find $y(0.5) \approx 1$, $y(1) \approx 1.5$, $y(1.5) \approx 1.75$, and $y(2) \approx 1.875$, a. What is $\frac{dy}{dx}$ at y=0, y=0.5, and y=1?

 b. Give a rough sketch of the slope field of this differential equation. (4 points)

3. Find all solutions to the differential equation $\frac{1}{t} \frac{dp}{dt} + p = 2$. (3 points)