1. Recall that the Taylor series for $\sin (x)$ is $\sum \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$. Find the Taylor series for $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t$. (3 points)
2. Suppose that we know that $\frac{d y}{d x}=f(y)$ for some function $f(y)$. Also suppose that we approximate the solution to this differential equation, with initial condition $y(0)=0$, with Euler's method and $\Delta x=0.5$. If we find $y(0.5) \approx 1, y(1) \approx 1.5, y(1.5) \approx 1.75$, and $y(2) \approx 1.875$,
a. What is $\frac{d y}{d x}$ at $y=0, y=0.5$, and $y=1$?
b. Give a rough sketch of the slope field of this differential equation.
3. Find all solutions to the differential equation $\frac{1}{t} \frac{d p}{d t}+p=2$.
