Name:

1. Recall that the Taylor series for $\sin(x)$ is $\sum \frac{(-1)^n x^{2n+1}}{(2n+1)!}$. Find the Taylor series for $\operatorname{Si}(x) = \int_0^x \frac{\sin(t)}{t} dt$. (3 points)

Solution: We know that $\sin(x) = \sum \frac{(-1)^n x^{2n+1}}{(2n+1)!}$, so $\frac{\sin(t)}{t} = \sum \frac{(-1)^n t^{2n}}{(2n+1)!}$. Integrating, we have

$$\operatorname{Si}(x) = \int_0^x \frac{\sin(t)}{t} dt = \int_0^x \sum \frac{(-1)^n t^{2n}}{(2n+1)!} dt.$$

We assume that we can integrate term-by-term, to get

$$\operatorname{Si}(x) = \sum \int_0^x \frac{(-1)^n t^{2n}}{(2n+1)!} dx = \sum \frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}.$$

We could also work this out with an expanded form of the series: $\operatorname{Si}(x) = \int_0^x \left(1 - \frac{t^2}{3!} + \frac{t^4}{5!} - \dots + \frac{(-1)^n t^{2n}}{(2n+1)!} + \dots\right) dt = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$ Note that because $\operatorname{Si}(x)$ is defined as the integral from t = 0 to t = x we don't have a constant of integration in this problem.

- 2. Suppose that we know that $\frac{dy}{dx} = f(y)$ for some function f(y). Also suppose that we approximate the solution to this differential equation, with initial condition y(0) = 0, with Euler's method and $\Delta x = 0.5$. If we find $y(0.5) \approx 1$, $y(1) \approx 1.5$, $y(1.5) \approx 1.75$, and $y(2) \approx 1.875$, (4 points)
 - **a.** What is $\frac{dy}{dx}$ at y=0, y=0.5, and y=1?

b. Give a rough sketch of the slope field of this differential equation.

Solution: We know that in general Euler's method gives $y(x + \Delta x) = y(x) + \Delta x f(y(x))$ (that is, $y_{n+1} = y_n + \Delta x f(y_n)$). Thus we know that $y(0.5) = 1 = 0 + 0.5 \cdot f(0)$, and thus $f(0) = \frac{dy}{dx}\big|_{x=0} = 2$. Similarly, with y(1) = 1.5, we have $y(1) = 1.5 = 1 + 0.5 \cdot f(0.5)$, so $f(0.5) = \frac{dy}{dx}\big|_{x=0.5} = 1$. And finally, we have y(1.5) = 1.75, so $y(1.5) = 1.75 = 1.5 + 0.5 \cdot f(1)$, and $f(1) = \frac{dy}{dx}\big|_{x=1} = 0.5$. Then we know that the slope of solutions to the differential equation are the same at any given y value, so that we have the slope field shown to the right.

0.5

3. Find all solutions to the differential equation $\frac{1}{t} \frac{dp}{dt} + p = 2$. (3 points)

Solution: Rearranging the equation, we have $\frac{dp}{dt} = t(2-p)$. Note that p=2 is therefore a solution. If $p \neq 2$, then $\frac{dp}{2-p} = t dt$, so that $-\ln|2-p| = \frac{1}{2}t^2 + C$. Solving for p, we have $p=2-Ae^{-t^2/2}$. Thus solutions are p=2 or $p=2-Ae^{-t^2/2}$.