1. Recall that the Taylor series for $\sin (x)$ is $\sum \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$. Find the Taylor series for $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t$.

Solution: We know that $\sin (x)=\sum \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, so $\frac{\sin (t)}{t}=\sum \frac{(-1)^{n} t^{2 n}}{(2 n+1)!}$. Integrating, we have

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t=\int_{0}^{x} \sum \frac{(-1)^{n} t^{2 n}}{(2 n+1)!} d t
$$

We assume that we can integrate term-by-term, to get

$$
\operatorname{Si}(x)=\sum \int_{0}^{x} \frac{(-1)^{n} t^{2 n}}{(2 n+1)!} d x=\sum \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)(2 n+1)!}
$$

We could also work this out with an expanded form of the series: $\operatorname{Si}(x)=\int_{0}^{x}\left(1-\frac{t^{2}}{3!}+\frac{t^{4}}{5!}-\cdots+\frac{(-1)^{n} t^{2 n}}{(2 n+1)!}+\right.$ $\cdots) d t=x-\frac{x^{3}}{3 \cdot 3!}+\frac{x^{5}}{5 \cdot 5!}-\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1) \cdot(2 n+1)!}+\cdots$. Note that because $\operatorname{Si}(x)$ is defined as the integral from $t=0$ to $t=x$ we don't have a constant of integration in this problem.
2. Suppose that we know that $\frac{d y}{d x}=f(y)$ for some function $f(y)$. Also suppose that we approximate the solution to this differential equation, with initial condition $y(0)=0$, with Euler's method and $\Delta x=0.5$. If we find $y(0.5) \approx 1, y(1) \approx 1.5, y(1.5) \approx 1.75$, and $y(2) \approx 1.875$,
a. What is $\frac{d y}{d x}$ at $y=0, y=0.5$, and $y=1$?
b. Give a rough sketch of the slope field of this differential equation.

Solution: We know that in general Euler's method gives $y(x+\Delta x)=$ $y(x)+\Delta x f(y(x))$ (that is, $\left.y_{n+1}=y_{n}+\Delta x f\left(y_{n}\right)\right)$. Thus we know that $y(0.5)=1=0+0.5 \cdot f(0)$, and thus $f(0)=\left.\frac{d y}{d x}\right|_{x=0}=2$. Similarly, with $y(1)=1.5$, we have $y(1)=1.5=1+0.5 \cdot f(0.5)$, so $f(0.5)=\left.\frac{d y}{d x}\right|_{x=0.5}=1$. And finally, we have $y(1.5)=1.75$, so $y(1.5)=1.75=1.5+0.5 \cdot f(1)$, and $f(1)=\left.\frac{d y}{d x}\right|_{x=1}=0.5$. Then we know that the slope of solutions to the differential equation are the same at any given y value, so that we have the
 slope field shown to the right.
3. Find all solutions to the differential equation $\frac{1}{t} \frac{d p}{d t}+p=2$.

Solution: Rearranging the equation, we have $\frac{d p}{d t}=t(2-p)$. Note that $p=2$ is therefore a solution. If $p \neq 2$, then $\frac{d p}{2-p}=t d t$, so that $-\ln |2-p|=\frac{1}{2} t^{2}+C$. Solving for p, we have $p=2-A e^{-t^{2} / 2}$. Thus solutions are $p=2$ or $p=2-A e^{-t^{2} / 2}$.

