Some Remaining Review Problems

(This is neither comprehensive nor guaranteed to be useful.)

1. Find the center of mass \bar{x}, \bar{y} of the solid formed by the region bounded by $x=0, x=2, y=1+e^{-x}$ and $y=1-e^{-x}$,
a. Rotated about the y-axis, if its density is $\delta(y)=y$ (mass units/unit volume).
b. Rotated about the x-axis, if its density is $\delta(x)=x$ (mass units/unit volume).
2. If, for the region in (1a), we had $\delta(x)=3+x$, can we find \bar{x} ? \bar{y} ? Why or why not?
3. Let $p(x)$ be a pdf, with $a \leq x \leq b$. Let $Q(x)$ be an antiderivative of $p(x)$. Show that the cdf of $p(x)$ is given by $P(x)=Q(x)-Q(b)+1$.
4. Let $p(x)$ be a pdf for the distribution of GPAs, x, earned by University of Michigan squirrels.
a. What is the domain of $p(x)$?
b. Sketch a reasonable graph that could be $p(x)$.
c. What is the meaning of the statement $p(2)=0.05$?
d. If $P(x)$ is the cdf for this distribution, what is the meaning of the statement $P(2)=0.953$?
5. Carefully determine if each of the following series converges or diverges.
a. $\sum \frac{x^{n}}{5^{n}+n^{2}}$, if $|x| \leq 4$.
b. $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln (n)}$
c. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \cdot \ln (n)}$
6. Carefully explain why, if $\sum\left|a_{n}\right|$ converges, we are able to conclude that $\sum a_{n}$ also converges.
a. Carefully explain why, if $\sum a_{n}$ converges, we are unable to conclude that $\sum\left|a_{n}\right|$ also converges.
