Some Remaining Review Problems

(This is neither comprehensive nor guaranteed to be useful.)

- 1. Find the center of mass \overline{x} , \overline{y} of the solid formed by the region bounded by $x=0, x=2, y=1+e^{-x}$ and $y=1-e^{-x}$,
 - **a.** Rotated about the y-axis, if its density is $\delta(y) = y$ (mass units/unit volume).
 - **b.** Rotated about the x-axis, if its density is $\delta(x) = x$ (mass units/unit volume).
- **2.** If, for the region in (1a), we had $\delta(x) = 3 + x$, can we find \overline{x} ? \overline{y} ? Why or why not?
- **3.** Let p(x) be a pdf, with $a \le x \le b$. Let Q(x) be an antiderivative of p(x). Show that the cdf of p(x) is given by P(x) = Q(x) Q(b) + 1.
- 4. Let p(x) be a pdf for the distribution of GPAs, x, earned by University of Michigan squirrels.
 - **a.** What is the domain of p(x)?
 - **b.** Sketch a reasonable graph that could be p(x).
 - **c.** What is the meaning of the statement p(2) = 0.05?
 - **d.** If P(x) is the cdf for this distribution, what is the meaning of the statement P(2) = 0.953?
- 5. Carefully determine if each of the following series converges or diverges.
 - **a.** $\sum \frac{x^n}{5^n + n^2}$, if $|x| \le 4$.
 - **b.** $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln(n)}$
 - $\mathbf{c.} \sum_{n=2}^{\infty} \frac{(-1)^n}{n \cdot \ln(n)}$
- **6.** Carefully explain why, if $\sum |a_n|$ converges, we are able to conclude that $\sum a_n$ also converges.
 - **a.** Carefully explain why, if $\sum a_n$ converges, we are unable to conclude that $\sum |a_n|$ also converges.