Some Random Review Problems

- 1. Let $F(x) = \int_2^x \frac{t^2-3}{t-1} dt$. For what value of a is the average value of F(x) equal to $4 \ln(3)$?
- 2. Consider the functions shown graphed to the right. What can you say about the convergence of

 - **a.** each of $\int_{0}^{1} f(x) dx$, $\int_{0}^{1} g(x) dx$, and $\int_{0}^{1} h(x) dx$? **b.** each of $\int_{0}^{1} x f(x) dx$, $\int_{0}^{1} x g(x) dx$, and $\int_{0}^{1} x h(x) dx$? **c.** each of $\int_{1}^{\infty} f(x) dx$, $\int_{1}^{\infty} g(x) dx$, and $\int_{1}^{\infty} h(x) dx$? **d.** each of $\int_{1}^{\infty} f(x) / x dx$, $\int_{1}^{\infty} g(x) / x dx$, and $\int_{1}^{\infty} h(x) / x dx$?

- **3.** Let R be bounded by $y = \sin(x)$, $y = 1/\sqrt{2}$, $x = \pi/4$ and $x = 3\pi/4$. Find the volume if R is
 - **a.** rotated around the x-axis.
 - **b.** rotated around y = -2.
 - **c.** the base of a solid whose cross-sections perpendicular to the x-axis are semicircles.
 - **d.** the base of a solid whose cross-sections perpendicular to the x-axis are equilateral triangles.
 - **e.** challenge problem: rotated around the y-axis.
- **4.** An airplane propeller has the shape given by $r(\theta) = 3\sin(3\theta)$ (in meters).
 - **a.** What is the domain for this (range of θ values)?
 - b. What is the area of one blade? Sketch a "slice" used to find this area.
 - c. If the density of a blade (with $0 < \theta < \pi/3$) is $\delta(\theta) = 1 \cos(6\theta)$ kg/m³, find the mass of the propeller blade.
- **5.** Find each of (a) $\int \frac{1}{x(x-2a)(x+b)} dx$; (b) $\int \frac{3}{x^2-2x+2} dx$; and (c) $\int (x^2+x)e^{2x} \sin(xe^x) dx$.
- **6.** A pond filled with muddy water is given by the region bounded by $y=0, x=100+\sqrt{5y}, y=5$ and x=0, rotated about the y-axis. Suppose the density of the muddy water is $\delta(y)=(6-y)\cdot 1000 \text{ kg/m}^3$.
 - **a.** Find the mass of a vertical column of the water, $1 \times 1 \times 5$ m³ in volume.
 - **b.** Therefore, deduce the pressure at the bottom of the pond.
 - **c.** Find the total force exerted by the water on the bottom of the pond.
 - **d.** Find the y-center of mass of all of the water in the pond.