Some Random Review Problems

1. Let $F(x)=\int_{2}^{x} \frac{t^{2}-3}{t-1} d t$. For what value of a is the average value of $F(x)$ equal to $4-\ln (3)$?
2. Consider the functions shown graphed to the right. What can you say about the convergence of
a. each of $\int_{0}^{1} f(x) d x, \int_{0}^{1} g(x) d x$, and $\int_{0}^{1} h(x) d x$?
b. each of $\int_{0}^{1} x f(x) d x, \int_{0}^{1} x g(x) d x$, and $\int_{0}^{1} x h(x) d x$?
c. each of $\int_{1}^{\infty} f(x) d x, \int_{1}^{\infty} g(x) d x$, and $\int_{1}^{\infty} h(x) d x$?
d. each of $\int_{1}^{\infty} f(x) / x d x, \int_{1}^{\infty} g(x) / x d x$, and $\int_{1}^{\infty} h(x) / x d x$?

3. Let R be bounded by $y=\sin (x), y=1 / \sqrt{2}, x=\pi / 4$ and $x=3 \pi / 4$. Find the volume if R is
a. rotated around the x-axis.
b. rotated around $y=-2$.
c. the base of a solid whose cross-sections perpendicular to the x-axis are semicircles.
d. the base of a solid whose cross-sections perpendicular to the x-axis are equilateral triangles.
e. challenge problem: rotated around the y-axis.
4. An airplane propeller has the shape given by $r(\theta)=3 \sin (3 \theta)$ (in meters).
a. What is the domain for this (range of θ values)?
b. What is the area of one blade? Sketch a "slice" used to find this area.
c. If the density of a blade (with $0 \leq \theta \leq \pi / 3)$ is $\delta(\theta)=1-\cos (6 \theta) \mathrm{kg} / \mathrm{m}^{3}$, find the mass of the propeller blade.
5. Find each of (a) $\int \frac{1}{x(x-2 a)(x+b)} d x$; (b) $\int \frac{3}{x^{2}-2 x+2} d x$; and (c) $\int\left(x^{2}+x\right) e^{2 x} \sin \left(x e^{x}\right) d x$.
6. A pond filled with muddy water is given by the region bounded by $y=0, x=100+\sqrt{5 y}, y=5$ and $x=0$, rotated about the y-axis. Suppose the density of the muddy water is $\delta(y)=(6-y) \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3}$.
a. Find the mass of a vertical column of the water, $1 \times 1 \times 5 \mathrm{~m}^{3}$ in volume.
b. Therefore, deduce the pressure at the bottom of the pond.
c. Find the total force exerted by the water on the bottom of the pond.
d. Find the y-center of mass of all of the water in the pond.
