Things to know Backwards and Forwards

a smattering of topics from chapter 16

- Writing double integrals
e.g., For D, the triangle with vertices $(0,0),(2,1)$ and $(2,-1)$:

1. Write double integrals for the area of D in rectangular and polar coordinates.
2. Rewrite the rectangular integral with the variables of integration in the opposite order.
3. If the density of the triangle is $\delta=x+|y|\left(\mathrm{g} / \mathrm{cm}^{2}\right)$, find the mass and center of mass of the triangle.
4. If a three-dimensional solid is bounded below by D and above by $z=\sqrt{x^{2}+y^{2}}$, write a double integral for its volume.

- Writing triple integrals
e.g., For E, the 3 D solid bounded by $z=x^{2}, y=x^{2}, y=1$ and $z=0$:

5. Set up a triple integral for the volume of E.
6. Rewrite it with the five other orders of integration.
7. If the density of the solid is $\delta=y$, write integrals for the mass and center of mass of the solid.
8. Find the mass and center of mass.

- Similar, in cylindrical and spherical coordinates:

9. For G bounded by $z=9-x^{2}-y^{2}$ and $z=1$, repeat (5)-(8) (use $\delta=z$ instead of $\delta=y$, however).
10. For H given as the eighth of a sphere in the 2 nd octant (that is, $x<0, y>0, z>0$) with radius 2 , similarly repeat (5)-(8) (but use $\delta=\sqrt{x^{2}+y^{2}+z^{2}}$).
