VECTOR CALCULUS FORMULAS TO KNOW AND LOVE

(from Chapter 17 in Stewart)
First, in all of the following:

- The notation $\mathbf{r}(t)=\vec{r}(t)$ indicates a position vector that specifies a curve C. We assume that $a \leq t \leq b$. For example, $\mathbf{r}=3 \cos (t) \mathbf{i}+3 \sin (t) \mathbf{j}+0 \mathbf{k}$, for $0 \leq t \leq 2 \pi$.
- Then, $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=$ the arclength element along a curve, and $d \mathbf{r}=\mathbf{r}^{\prime}(t) d t=$ the vector element along a curve.
- The notation $\mathbf{r}(u, v)=\vec{r}(u, v)$ indicates a position vector that is a function of any two variables and which specifies a surface S. We assume that the variables $(u, v) \in D$ for some domain D. For example, $\mathbf{r}=<r \cos (\theta), r \sin (\theta), 4-r^{2}>$, for $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$.
- Then $d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v=$ the surface area element on a surface, and $d \mathbf{S}=\mathbf{r}_{u} \times \mathbf{r}_{v} d u d v=$ the oriented vector surface area element (with vector normal to the surface).
- The function $f(x, y)$ or $f(x, y, z)$ is a scalar function that returns a value: e.g., $f(x, y, z)=3 x y+\sin (z)$.
- The vector function $\mathbf{F}(x, y)$ or $\mathbf{F}(x, y, z)$ is a vector field that returns a vector: e.g., $\mathbf{F}=2 x y \mathbf{i}+x^{2} \mathbf{j}$. We will also use the notation $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ when referring to two-dimensional vector fields. For example, in the preceding vector field, $P=2 x y$ and $Q=x^{2}$.
- Because we write $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ for two-dimensional \mathbf{F}, the following integral notations are equivalent: $\int \mathbf{F} \cdot d \mathbf{r}=\int P d x+Q d y$.
Make sure that the notations indicated above are obvious to you-to the point of your making the assumption that if you see $\mathbf{r}(t)$ written somewhere you immediately think "this defines a curve C " and start thinking about what curve it is, etc.

Theorems of Vector Calculus

- The Fundamental Theorem of Line Integrals

$$
\int_{C} \vec{\nabla} f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

Note that this applies for conservative $\mathbf{F}: \int_{C} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))$.

- Green's Theorem

$$
\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Here D is a region in the xy-plane, and C is the curve that bounds D, oriented counterclockwise. Therefore: Green's theorem is only applicable to closed curves C that are in the $x y$-plane. Also note that for two-dimensional functions $\mathbf{F}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\operatorname{curl} \mathbf{F} \cdot \mathbf{k}$-and that \mathbf{k} is the normal vector for a region (surface) in the $x y$-plane.

- Stokes' Theorem

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Here \mathbf{S} is any bounded surface S, and C is the curve that bounds S, oriented "counterclockwise." Therefore: Stokes' theorem is only applicable to the (odd) cases when we want to find $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, and/or cases when we want to find $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ and there is a "nice" surface S bounded by C.

- the Divergence Theorem (Gauss' Theorem)

$$
\iiint_{E} \operatorname{div} \mathbf{F} d V=\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

Here \mathbf{S} is the surface that bounds the volume E. Therefore: the divergence theorem is most applicable to cases when we want to find the flux through a closed surface.

