A VECTOR INTEGRAL PROBLEM EXAMPLE

Problem: Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ around C if $F = \langle 3xy, 2yz, z \rangle$ and C is the piecewise linear curve that extends from (0,0,0) to (1,2,1) to (0,0,1) to (0,0,0).

Answer 1: The curve is sketched to the right. We notice that it is a closed curve with a nice contained surface S, namely the triangle inside the curve. Therefore, we can find the line integral by using Stokes' theorem: $\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.

So let's use Stokes' theorem. To do this, we need to parameterize the surface to find $d\mathbf{S}$, we need to find curl \mathbf{F} , and we need to integrate curl $\mathbf{F} \cdot d\mathbf{S}$ over the surface. We'll do this in parts.

First, we know that $d\mathbf{S} = \mathbf{r}_u \times \mathbf{r}_v \, du \, dv$, so we need to find \mathbf{r} , a parameterization of the surface S. Noticing that the surface is just a cut-out from the plane y = 2x, we might choose to choose \mathbf{r} to be the plane and then restrict the domain that we're looking at in that plane to the triangular piece. The plane can have any z value, so we can write it as $\mathbf{r}(x, z) = \langle x, 2x, z \rangle$. What's the domain? We have to describe it in terms of x and z. Clearly, $0 \le x \le 1$, and z goes from the diagonal line to z = 1. The diagonal line has z = 0 when x = 0 and z = 1 when x = 1, so it must be z = x. Thus our finished parameterization is $\mathbf{r}(x, z) = x \mathbf{i} + 2x \mathbf{j} + z \mathbf{k}$ with $0 \le x \le 1$ and $x \le z \le 1$. Then $\mathbf{r}_u = \mathbf{r}_x = \langle 1, 2, 0 \rangle$ and $\mathbf{r}_v = \mathbf{r}_z = \langle 0, 0, 1 \rangle$, so $d\mathbf{S} = (\mathbf{r}_u \times \mathbf{r}_v) \, du \, dv = (\mathbf{r}_x \times \mathbf{r}_z) \, dx \, dz = \langle 1, 2, 0 \rangle \times \langle 0, 0, 1 \rangle \, dx \, dz = \langle 2, -1, 0 \rangle \, dx \, dz.^1$

Second, we need to know curl **F**. This is just $\overrightarrow{\nabla} \times \mathbf{F} = -2y \mathbf{i} + 0 \mathbf{j} - 3x \mathbf{k}$. Thus curl $\mathbf{F} \cdot d\mathbf{S} = -4y \, dx \, dz$. This needs to be evaluated on the surface, where y = 2x, so curl $\mathbf{F} \cdot d\mathbf{S} = -8x \, dx \, dz$.

Finally, we can evaluate the integral easily, finding $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_0^1 \int_x^1 -8x \, dz \, dx = \int_0^1 8(x^2 - x) \, dx = -\frac{4}{3}$.

Answer 2: Of course, we could also simply evaluate the line integral. To do this, we'll break the curve C into three pieces: the curve C_1 going from (0,0,0) to (1,2,1), the curve C_2 going from (1,2,1) to (0,0,1), and the curve C_3 going from (0,0,1) to (0,0,0). For each of these, we find $\int_{C_i} \mathbf{F} \cdot d\mathbf{r}$ by first finding a parameterization $\mathbf{r}(t)$ of the curve, then finding $d\mathbf{r} = \mathbf{r}'(t) dt$, then taking the dot product and evaluating the integral.

On C_1 , we can parameterize $\mathbf{r}(t) = \langle t, 2t, t \rangle$, with $0 \leq t \leq 1$. Then $\mathbf{r}'(t) = \langle 1, 2, 1 \rangle dt$, and $\mathbf{F} \cdot d\mathbf{r} = (3xy + 4yz + z) dt$. Of course, we're only interested in values of x, y and z on the curve C_1 , so we can plug in x = t, y = 2t and z = t to get $\mathbf{F} \cdot d\mathbf{r} = (14t^2 + t) dt$. (Check that you get the same thing.) Then $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (14t^2 + t) dt = \frac{31}{6}$.

On C_2 , we can parameterize $\mathbf{r}(t) = \langle 1 - t, 2(1 - t), 1 \rangle$, with $0 \leq t \leq 1$. Then $\mathbf{r}'(t) = \langle -1, -2, 0 \rangle dt$, and $\mathbf{F} \cdot d\mathbf{r} = (-3xy - 4yz) dt$. Again, we're only interested in values of x, y and z on the curve C_2 , so we can plug in x = 1 - t, y = 2(1 - t) and z = 1 to get $\mathbf{F} \cdot d\mathbf{r} = (-6(1 - t)^2 - 8(1 - t)) dt$. Then $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (-6(1 - t)^2 - 8(1 - t)) dt = -6$.

 $\begin{array}{l} On \ C_3, \text{ we might take } \mathbf{r}(t) = <0, 0, 1-t>, \text{ with } 0 \le t \le 1. \text{ Then } \mathbf{r}'(t) = <0, 0, -1> \ dt, \text{ and } \mathbf{F} \cdot d\mathbf{r} = -z \ dt. \\ \text{Here } z = 1-t, \text{ so } \mathbf{F} \cdot d\mathbf{r} = -(1-t) \ dt. \text{ Then } \int_{C_3} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (t-1) \ dt = -\frac{1}{2}. \\ \text{The integral is then } \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3} \mathbf{F} \cdot d\mathbf{r} = \frac{31}{6} - 6 - \frac{1}{2} = \frac{31}{6} - \frac{36}{6} - \frac{3}{6} = -\frac{8}{6} = -\frac{4}{3}. \end{array}$

The integral is then $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3} \mathbf{F} \cdot d\mathbf{r} = \frac{51}{6} - 6 - \frac{1}{2} = \frac{51}{6} - \frac{50}{6} - \frac{5}{6} = -\frac{5}{6} = -\frac{3}{2}$

Which of these is easier? In general, it's hard to say. There are some cases (in particular, *Green's theorem* and the *divergence theorem*) where one of the possible integrals is often easier to do (in Green's theorem, it's often more desirable to integrate $\iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy$ than $\oint_C \mathbf{F} \cdot d\mathbf{r}$, and in the divergence theorem it is almost always better to evaluate $\iiint_V \text{div } \mathbf{F} dV$ than $\iint_S \mathbf{F} \cdot d\mathbf{S}$). In this case, it's not clear. A good rule of thumb is to try whichever formulation isn't given to you, or to start both and see which looks like it is going to be easier.

¹ Note that the surface could also be characterized with $\theta = \arctan(2)$, in which case by using cylindrical coordinates we can get the alternate parameterization $\mathbf{r} = \langle r \cos(\theta), r \sin(\theta), z \rangle = \langle \frac{1}{\sqrt{5}} r, \frac{2}{\sqrt{5}} r, z \rangle$ with $0 \leq r \leq \sqrt{5}$ and $\frac{1}{\sqrt{5}} r \leq z \leq 1$. Check that you can see how this is derived and use it to obtain the same answer as above.