A VECTOR INTEGRAL PROBLEM EXAMPLE

Problem: Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ around C if $F=<3 x y, 2 y z, z>$ and C is the piecewise linear curve that extends from $(0,0,0)$ to $(1,2,1)$ to $(0,0,1)$ to $(0,0,0)$.

Answer 1: The curve is sketched to the right. We notice that it is a closed curve with a nice contained surface S, namely the triangle inside the curve. Therefore, we can find the line integral by using Stokes' theorem: $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.

So let's use Stokes' theorem. To do this, we need to parameterize the surface to find $d \mathbf{S}$, we need to find curl \mathbf{F}, and we need to integrate curl $\mathbf{F} \cdot d \mathbf{S}$
 over the surface. We'll do this in parts.

First, we know that $d \mathbf{S}=\mathbf{r}_{u} \times \mathbf{r}_{v} d u d v$, so we need to find \mathbf{r}, a parameterization of the surface S. Noticing that the surface is just a cut-out from the plane $y=2 x$, we might choose to choose \mathbf{r} to be the plane and then restrict the domain that we're looking at in that plane to the triangular piece. The plane can have any z value, so we can write it as $\mathbf{r}(x, z)=\langle x, 2 x, z\rangle$. What's the domain? We have to describe it in terms of x and z. Clearly, $0 \leq x \leq 1$, and z goes from the diagonal line to $z=1$. The diagonal line has $z=0$ when $x=0$ and $z=1$ when $x=1$, so it must be $z=x$. Thus our finished parameterization is $\mathbf{r}(x, z)=x \mathbf{i}+2 x \mathbf{j}+z \mathbf{k}$ with $0 \leq x \leq 1$ and $x \leq z \leq 1$. Then $\mathbf{r}_{u}=\mathbf{r}_{x}=<1,2,0>$ and $\mathbf{r}_{v}=\mathbf{r}_{z}=<0,0,1>$, so $d \mathbf{S}=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v=\left(\mathbf{r}_{x} \times \mathbf{r}_{z}\right) d x d z=<1,2,0>\times<0,0,1>d x d z=<2,-1,0>d x d z .^{1}$

Second, we need to know curl \mathbf{F}. This is just $\vec{\nabla} \times \mathbf{F}=-2 y \mathbf{i}+0 \mathbf{j}-3 x \mathbf{k}$. Thus $\operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=-4 y d x d z$. This needs to be evaluated on the surface, where $y=2 x$, so curl $\mathbf{F} \cdot d \mathbf{S}=-8 x d x d z$.

Finally, we can evaluate the integral easily, finding $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{1} \int_{x}^{1}-8 x d z d x=$ $\int_{0}^{1} 8\left(x^{2}-x\right) d x=-\frac{4}{3}$.
Answer 2: Of course, we could also simply evaluate the line integral. To do this, we'll break the curve C into three pieces: the curve C_{1} going from $(0,0,0)$ to $(1,2,1)$, the curve C_{2} going from $(1,2,1)$ to $(0,0,1)$, and the curve C_{3} going from $(0,0,1)$ to $(0,0,0)$. For each of these, we find $\int_{C_{i}} \mathbf{F} \cdot d \mathbf{r}$ by first finding a parameterization $\mathbf{r}(t)$ of the curve, then finding $d \mathbf{r}=\mathbf{r}^{\prime}(t) d t$, then taking the dot product and evaluating the integral.

On C_{1}, we can parameterize $\mathbf{r}(t)=<t, 2 t, t>$, with $0 \leq t \leq 1$. Then $\mathbf{r}^{\prime}(t)=<1,2,1>d t$, and $\mathbf{F} \cdot d \mathbf{r}=(3 x y+4 y z+z) d t$. Of course, we're only interested in values of x, y and z on the curve C_{1}, so we can plug in $x=t, y=2 t$ and $z=t$ to get $\mathbf{F} \cdot d \mathbf{r}=\left(14 t^{2}+t\right) d t$. (Check that you get the same thing.) Then $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(14 t^{2}+t\right) d t=\frac{31}{6}$.

On C_{2}, we can parameterize $\mathbf{r}(t)=<1-t, 2(1-t), 1>$, with $0 \leq t \leq 1$. Then $\mathbf{r}^{\prime}(t)=<-1,-2,0>d t$, and $\mathbf{F} \cdot d \mathbf{r}=(-3 x y-4 y z) d t$. Again, we're only interested in values of x, y and z on the curve C_{2}, so we can plug in $x=1-t, y=2(1-t)$ and $z=1$ to get $\mathbf{F} \cdot d \mathbf{r}=\left(-6(1-t)^{2}-8(1-t)\right) d t$. Then $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(-6(1-t)^{2}-8(1-t)\right) d t=-6$.

On C_{3}, we might take $\mathbf{r}(t)=<0,0,1-t>$, with $0 \leq t \leq 1$. Then $\mathbf{r}^{\prime}(t)=<0,0,-1>d t$, and $\mathbf{F} \cdot d \mathbf{r}=-z d t$. Here $z=1-t$, so $\mathbf{F} \cdot d \mathbf{r}=-(1-t) d t$. Then $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}(t-1) d t=-\frac{1}{2}$.

The integral is then $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\frac{31}{6}-6-\frac{1}{2}=\frac{31}{6}-\frac{36}{6}-\frac{3}{6}=-\frac{8}{6}=-\frac{4}{3}$.
Which of these is easier? In general, it's hard to say. There are some cases (in particular, Green's theorem and the divergence theorem) where one of the possible integrals is often easier to do (in Green's theorem, it's often more desirable to integrate $\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y$ than $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, and in the divergence theorem it is almost always better to evaluate $\iiint_{V} \operatorname{div} \mathbf{F} d V$ than $\left.\iint_{S} \mathbf{F} \cdot d \mathbf{S}\right)$. In this case, it's not clear. A good rule of thumb is to try whichever formulation isn't given to you, or to start both and see which looks like it is going to be easier.
${ }^{1}$ Note that the surface could also be characterized with $\theta=\arctan (2)$, in which case by using cylindrical coordinates we can get the alternate parameterization $\mathbf{r}=<r \cos (\theta), r \sin (\theta), z>=<\frac{1}{\sqrt{5}} r, \frac{2}{\sqrt{5}} r, z>$ with $0 \leq r \leq \sqrt{5}$ and $\frac{1}{\sqrt{5}} r \leq z \leq 1$. Check that you can see how this is derived and use it to obtain the same answer as above.

