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For all problems, SHOW ALL OF YOUR WORK . Partial solutions and problems with missing steps
will be marked wrong. Continue your work on the back of the page or extra sheet at the end of the exam
if you need additional space. You do not need but may use the normal graphing calculator functions of
any graphing calculator, but not any differential equations functionality it may have.

1. For each of the following differential equations, two solutions to the complementary homogeneous prob-
lem are given. Find the general solution for each.

a. y′′ + 3y′ + 2y = 3x, y1(x) = e−2x, y2(x) = e−x. (10 points)

Solution: The general solution is y = C1y1 + C2y2 + yp. To find yp we use the method of
undetermined coefficients: we guess yp = Ax + B and plug in to find A and B. y′p = A
and y′′p = 0, so 3A + 2Ax + 2B = 3x. Matching the coefficients of x and 1, 2A = 3, so
A = 3

2 and 3A+ 2B = 0, so B = − 9
4 . Thus

y = C1e
−2x + C2e

−x +
3
2
x− 9

4
.

b. y′′ + 4y′ + 4y = 2e−2x, y1(x) = e−2x, y2(x) = xe−2x. (10 points)

Solution: Proceeding as before and using the method of undetermined coefficients, we
would guess yp = Ae−2x, but this is a solution to the complementary homogeneous prob-
lem, so we multiply by enough factors of x that this is no longer the case and instead guess
yp = Ax2e−2x. Then y′p = A(2xe−2x − 2x2e−2x) and y′′p = A(2e−2x − 8xe−2x + 4x2e−2x.
Plugging these into the differential equation, we get

A
(

(2e−2x − 8xe−2x + 4x2e−2x) + 4(2xe−2x − 2x2e−2x) + 4x2e−2x
)

= 2Ae−2x,

so that we must have A = 1. The particular solution is therefore

y = C1e
−2x + C2xe

−2x + x2e−2x.

2. Find all equilibrium solutions to the system

x′ = x(3− x)− 2xy
y′ = y(1− y) + xy.

In what direction are solutions moving when (x, y) = (1, 2)? How is this related to a direction field for
the system? (6 points)

Solution: The equilibrium solutions are those for which x′ = y′ = 0, so that

0 = x(3− x− 2y)
0 = y(1 + x− y).

From the first, x = 0 or x = 3−2y. If x = 0 the second equation requires that either y = 0
or y = 1. Thus two equilibrium solutions are (0, 0) and (0, 1). In the second equation
y = 0 or y = x+ 1. If y = 0 in the first equation, there is the non-zero solution x = 3, so
a third equilibrium solution is (3, 0). Finally, if x = 3− 2y and y = x+ 1, x = 3− 2x− 2
so x = 1

3 and y = 4
3 . The last equilibrium point is ( 1

3 ,
4
3 ).

When (x, y) = (1, 2), the system gives (x′, y′) = (−2, 0) (by plugging in x = 1 and
y = 2), so a solution curve at that point must be moving only to the left. This is related
to the direction field in that it tells us the slope (in this case, zero) of the line in the
direction field that we would draw at that point. We could construct the entire direction
field by finding (x′, y′) at every point, determining the slope y′

x′ , and drawing a line with
that slope at the point.
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3. The charge on a capacitor, Q(t), in a simple LRC circuit is given by LQ′′(t) +RQ′(t) +
1
C
Q(t) = E(t),

where L,R, and C are the inductance, resistance and capacitance of the inductor, resistor and capacitor
in the system. Suppose that R = 1kΩ, C = 20µF , L = 0.35h, and that the system is forced with an
applied charge E(t) = A sin(ωt).

a. For what ω, if any, will this system exhibit resonance? Explain. (8 points)

Solution: In this case the system is damped, so we will not see any (pure) resonance. We
might expect to see practical resonance (though in that the damping is quite large in this
case this is unlikely to be obvious), however, when the forcing frequency ω is close to the
natural frequency of the undamped system. (This is ω0 = 1√

LC
.)

b. Now suppose R = 0 (the resistor is removed). If ω = 120π and A = 117, find the charge Q(t) if
Q(0) = Q′(0) = 0. Be sure that it is clear why you proceed as you do and how you arrive at your
answer. Will your solution exhibit resonance, beats, or neither? Why? (10 points)

Solution: With the resistor removed the problem isQ′′+ 1
LCQ = A

L sin(120πt). The natural
frequency of the system is ω0 = 1√

LC
≈ 377.964 (remember that 20µF = 20 × 10−6F).

The forcing frequency ω ≈ 376.991 is very close to this, so we expect to see beats. If
they had been equal we would have resonance, as this is an undamped system. The
complementary homogeneous solution for the problem is Qc = C1 cos(ω0t) + C2 sin(ω0t).
To find the particular solution, we can use the method of undetermined coefficients. We
guess Qp = A sin(ωt) +B cos(ωt), but because there is no Q′ term on the left-hand side of
the equation we note that B will be zero, and so can omit it from the outset. Plugging this
Qp into the equation, we get −ω2A+ω2

0A = 117
L , so A = 117

L(ω2
0−ω2)

≈ −0.455. Our solution
is therefore Q = C1 cos(ω0t)+C2 sin(ω0t)−0.455 sin(120πt). The initial conditions require
that C1 = 0 and ω0C2 − 120π(0.455) = 0, so C2 = 0.454, and the solution is

Q = 0.454sin(ω0t)− 0.455 sin(120πt).

4. Suppose that the populations of two interacting species are given by the system

x′ = x(1− 2x) + xy

y′ = y(2− y) + xy

Use Euler’s method with h = 0.1 to approximate x(0.2) and y(0.2) if x(0) = 1 and y(0) = 1.5. (12 points)

Solution: Euler’s method says that xn+1 = xn + hf(tn,xn) (where x = (x y)T and
f gives the right-hand side of the system). Let’s take f(x, y) = x(1 − 2x) + xy and
g(x, y) = y(2− y) + xy and make a table of values showing how this works.
n tn xn yn f(xn, yn) g(xn, yn) xn+1 yn+1

0 0 1 1.5 0.5 2.25 1 + .1 · .5 = 1.05 1.5 + .1 · 2.25 = 1.725
1 0.1 1.05 1.725 0.656 2.286 1.05 + .1 · .656 = 1.116 1.725 + .1 · 2.286 = 1.954
2 0.2 1.116 1.954
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5. If A =
(

1 3
2 −1

)
, v =

(
1
4

)
, and c = 4, find Av − cv. (5 points)

Solution: Av =
(

1 3
2 −1

)(
1
4

)
=
(

13
−2

)
and cv =

(
4
16

)
, so Av − cv =

(
9
−18

)
.

a. Is this an eigenvalue problem? Explain. (5 points)

Solution: This is not an eigenvalue problem. For an eigenvalue problem we are solving
Av = λv, which is the same as Av− λv = 0. Thus the problem we have above looks like
an eigenvalue problem (with c = λ), but because the result we obtained isn’t zero we know
that the c and v we are using there aren’t an eigenvalue and eigenvector of the matrix A.

6. Solve the system x′ = Ax if A =
(

1 −1
2 3

)
. (12 points)

Solution: We guess x = veλt. Plugging this in, we know that λ must be an eigenvalue
and v an eigenvector of the matrix A. This means that λ must satisfy det(A − λI) = 0,
which is ∣∣∣∣ 1− λ −1

2 3− λ

∣∣∣∣ = (1− λ)(3− λ) + 2 = 0.

Thus λ2 − 4λ + 5 = 0. This doesn’t factor, but an easy quadratic formula or calculator
calculation gives λ = 2± i. The eigenvector corresponding to λ = 2 + i must satisfy(

−1− i −1
2 1− i

)(
v1

v2

)
=
(

0
0

)
.

We know that the two equations here are the same because λ is an eigenvalue, so let’s use
the first. If v1 = −1, v2 = 1 + i, so a solution is

xa =
(
−1

1 + i

)
e(2+i)t.

Sadly, this is complex-valued, and we really do like real-valued solutions, so let’s find
a couple of real-valued ones: we’ll use the real and imaginary parts of this solution.
Expanding it to find them,

xa = e2t

(
−1

1 + i

)
(cos(t) + i sin(t))

= e2t

(
− cos(t)− i sin(t)

(cos(t)− sin(t)) + i(cos(t) + sin(t))

)
,

So our general solution is

x = C1Re(xa) + C2Im(xa) = C1e
2t

(
− cos(t)

cos(t)− sin(t)

)
+ C2e

2t

(
− sin(t)

cos(t) + sin(t)

)
.
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7. Consider the crude model of the lungs and blood shown in the
figure to the right. If x1 is the amount of some toxin in lungs
(which comes from inhaling the toxin at a rate I0), x2 is the
amount of that toxin in the bloodstream, and the constants kj
are the constants of proportionality for the indicated transfers
of the toxins, the model predicts that

x′1 = −k1x1 + k2x2 + I0

x′2 = k1x1 − (k2 + k3)x2.

a. Explain why this makes sense. (5 points)

Solution: This makes sense because it says that x1 is decreased by the factor k1x1, re-
flecting transfer from the lungs to the bloodstream (the lower “pipe” in the figure), and
increased by the factors k2x2, reflecting transfer back (the upper “pipe” in the figure) and
I0, which is the inhaled amount. Similarly, x2 is increased by the transfer from the lungs
(k1x1) and decreased by transfer back (k2x2) and removal from the blood (the output
“pipe” in the figure), k3x2.

b. Rewrite the system in matrix notation. (5 points)

Solution: (
x1

x2

)′
=
(
−k1 k2

k1 −(k2 + k3)

)(
x1

x2

)
+
(
I0
0

)
c. If I0 = 60, k1 = k2 = 2 and k3 = 3, solve it. (12 points)

Solution: With these constants, the system above becomes(
x1

x2

)′
=
(
−2 2
2 −5

)(
x1

x2

)
+
(

60
0

)
.

We solve for the complementary homogeneous solution first (ignoring the forcing term
(60 0)T ). Let x = veλt; then, as in problem 6, det(A−λI) = 0, or (−2−λ)(−5−λ)−4 =
λ2 + 7λ + 6 = 0. This factors as (λ + 6)(λ + 1) = 0, so the eigenvalues are λ = −6 or

λ = −1. If λ = −6, the eigenvector must satisfy
(

4 2
2 1

)(
v1

v2

)
=
(

0
0

)
, so v =

(
1
−2

)
.

Similarly if λ = −1,
(
−1 2
2 −4

)(
v1

v2

)
=
(

0
0

)
, so v =

(
2
1

)
. The homogeneous solution

to the problem is therefore

xc = C1

(
1
−2

)
e−6t + C2

(
2
1

)
e−t.

To find the particular solution, use the method of undetermined coefficients. The forcing
term is a constant, so let’s guess that xp = a, a constant vector. Plugging in (and noting
that the derivative of a constant vector is zero), we get

0 =
(
−2 2
2 −5

)(
a1

a2

)
+
(

60
0

)
.

This is 2a1−2a2 = 60 and 2a1−5a2 = 0. Subtracting the second from the first, 3a2 = 60,
so a2 = 20. Then a1 = 50. Our final solution is therefore

x = xc + xp = C1

(
1
−2

)
e−6t + C2

(
2
1

)
e−t +

(
50
20

)
.


