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For all problems, SHOW ALL OF YOUR WORK . While partial credit will be given, partial solutions
that could be obtained directly from a calculator or a guess are worth no points. Continue your work
on the back of the page or extra sheet at the end of the exam if you need additional space. You do
not need but may use the normal graphing calculator functions of any graphing calculator, but NOT any
differential equations functionality it may have. If you need to borrow a graphing calculator, ask me.

1. For each of the following, set up the appropriate form of the particular solution yp but do not determine
the values of the coefficients in your solution. Be sure it is clear why your expression for yp has the form
it does.

a. y′′ + 3y′ + 2y = 4e−2x − πe2x. (8 points)

Solution: Note that the complementary homogeneous solution to the problem is yc = c1e
−x+

c2e
−2x. Using the Method of Undetermined Coefficients, we would guess yp = Ae−2x +

Be2x. However, the first of these terms is in yc, so we modify our guess to

yp = Axe−2x +Be2x.

b. y′′ + 4y = x(4 + 2 sin(2x)). (8 points)

Solution: Here, yc = c1 cos(2x) + c2 sin(2x). To see the correct form for yp it’s easiest to
expand out the right-hand side of the equation to 4x + 2x sin(2x). We would guess yp =
Ax+B+Cx cos(2x)+D cos(2x)+Ex sin(2x)+F sin(2x), to capture all of the derivatives of
the forcing terms, but the cosine and sine terms are present in the homogeneous solution.
We therefore modify this to

yp = Ax+B + Cx2 cos(2x) +Dx cos(2x) + Ex2 sin(2x) + Fx sin(2x).

2. Use the eigenvalue method to solve the initial value problem ~x =
(

3 8
2 −3

)
~x, ~x(0) =

(
7
3

)
. (16 points)

Solution: Let ~x = ~veλt. Then
(

3− λ 8
2 −3− λ

)
~v = ~0, so det(

(
3− λ 8

2 −3− λ

)
) =

λ2 − 25 = 0. Thus λ = ±5. If λ = −5, the matrix equation for ~v degenerates to
v1 + v2 = 0, so ~v = (−1 1)T . If λ = 5 it becomes −v1 + 4v2 = 0, so that ~v = (4 1)T . A
general solution is therefore

~x = c1

(
−1
1

)
e−5t + c2

(
4
1

)
e5t.

The initial conditions give −c1 + 4c2 = 7 and c1 + c2 = 3, so c1 = 1 and c2 = 2. The
solution is therefore

~x =
(
−1
1

)
e−5t +

(
8
2

)
e5t.
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3. What is an eigenvalue problem? What condition do we impose to find the eigenvalues of a matrix?
(4 points)

Solution: An eigenvalue problem is the problem of finding a vector ~v and scalar λ such that,
for a given matrix A, A~v = λ~v (or, equivalently, (A− λI)~v = ~0). To find the eigenvalues
λ we require that det(A− λI) = 0.

a. How does the condition that you indicated in (3) follow from your statement of what an eigenvalue
problem is? (4 points)

Solution: Because the eigenvalue problem A~v = λ~v can be rewritten as A~v = λI~v, or
A~v − λI~v = ~0, we can write it in the second of the forms given above: (A − λI)~v = ~0.
The condition is then just requiring that the determinant of the coefficient matrix of ~v be
zero.

b. Why do we impose the condition that you indicated in (3) (that is, what does imposing the condition
guarantee us)? (4 points)

Solution: The requirement that the determinant be zero guarantees that the coefficient
matrix A− λI is singular, which will result in the matrix equation (A− λI)~v = ~0 having
(an infinite number of) nontrivial solutions for ~v.

4. Consider the system ~x ′ =
(

2 −5
4 6

)
~x. The eigenvalues and eigenvectors of the matrix

(
2 −5
4 6

)
are

λ = 4± 4i and ~v =
(
−1± 2i

2

)
. Find the general (real-valued) solution to this problem. (12 points)

Solution: To write a real-valued general solution we need two real-valued linearly-independent
solutions to the problem, which we can get by pulling apart the real and imaginary parts
of a complex-valued solution. Using the plus in the eigenvalues and eigenvectors provided,
a complex-valued solution is

~x =
(
−1 + 2i

2

)
e(4+4i)t = e4t

(
−1 + 2i

2

)
(cos(4t) + i sin(4t))

= e4t

[(
− cos(4t)− 2 sin(4t)

2 cos(4t)

)
+ i

(
2 cos(4t)− sin(4t)

2 sin(4t)

)]
.

Thus a real-valued solution is

~xg = c1

(
− cos(4t)− 2 sin(4t)

2 cos(4t)

)
e4t + c2

(
2 cos(4t)− sin(4t)

2 sin(4t)

)
e4t.
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spring

boat’s motion

5. A clown stands on a pogo stick (note: a pogo stick is essentially a spring; see
figure to the right) on the deck of a boat. The up-and-down motion of the
boat is periodic with a frequency ω. The clown’s vertical displacement is then
governed by the initial value problem

y′′ = −cy′ − 20y + 17 sin(ωt), y(0) = 0, y′(0) = 0.

a. Is it possible that this equation will allow the the clown’s displacement to exhibit beats? Explain
any conditions that would have to be true for this to happen. (4 points)

Solution: This is possible if c = 0 (there is no damping) and ω ≈ ω0, where ω0 is the natural
frequency at which the pogo stick tends to oscillate (which is ω0 =

√
20).

b. Suppose, regardless of what you said in (5a), that the clown’s motion exhibits beats. Sketch a graph
illustrating this. Explain in a couple of sentences what it says about the clown’s displacement (that
is, what can you say about how the displacement changes with time? Is the displacement large or
small? Growing of decaying?, etc.). (6 points)

Solution: A solution that exhibits beats would appear thus:

2 4 6 8 10 12 14

-1

-0.5

0.5

1

This says that the clown is bouncing up and down with a fairly high frequency, and with a
varying amplitude. Initially the height of the bounces is small, but it then increases until
s/he is bouncing up and down with quite a large amplitude. It then decreases again, and
so on. At some point we anticipate that the clown will be quite sick.

c. Now suppose that c = 4 and that the boat’s motion continues with ω = 4 for a long time. Solve
the initial value problem (insofar as you need to) and find an expression describing the long-term
behavior of the clown’s displacement. (12 points)

Solution: If c = 4, we’re solving the problem y′′ + 4y′ + 20y = 17 sin(4t). To determine the
long-term behavior, we need to know yp, because the complementary homogeneous solution
yc will decay on account of the non-zero damping (c = 4). Guess yp = A cos(4t)+B sin(4t).
Plugging into the equation, we get

−16A+ 16B + 20A = 4A+ 16B = 0
−16B − 16A+ 20B = −16A+ 4B = 17

(from the coefficients of cos(4t) and sin(4t), respectively). Thus, multiplying the first by
four and adding, 68B = 17, so B = 1/4. Then A = −1. Thus in the long-term the clown’s
displacement is given by

yp = − cos(4t) +
1
4

sin(4t).
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6. Write down a differential equation for which you could use Variation of Parameters but could not use the
Method of Undetermined Coefficients. Explain what characteristics of your equation make it a correct
answer to this question. Be sure to include in your explanation what you use Variation of Parameters
to find. Note that you do not need to solve the problem that you write down. (6 points)

Solution: The two most obvious candidates for such an equation are things like y′′ + 4y =
tan(x) and 1

x2 y
′′ + y = e−2x. Variation of Parameters (and the Method of Undetermined

Coefficients) works only for linear equations, which these are. The Method of Undeter-
mined Coefficients (MUC) further requires that the forcing function f(x) (= tan(x) or e−2x

in the above) be “nice”—that is, have a finite number of linearly independent derivatives.
f(x) = tan(x) does not have this property, so MUC cannot be used for the first equation.
MUC also relies on the differential equation we’re solving having constant-coefficients,
which isn’t the case in the second equation. Therefore it could not be used in the sec-
ond case even though the forcing f(x) = e−2x is very “nice.” Finally, both Variation of
Parameters and MUC determine a particular solution yp for us.

y
1

y2

7. Two skydivers, after leaping one-after-the-other from a plane, are playing with
a long spring (figure to the right). The spring’s equilibrium length is L. A
system modeling this is

m1 y
′′
1 = m1g − cy′1 + k(y2 − y1 − L)

m2 y
′′
2 = m2g − cy′2 − k(y2 − y1 − L).

a. Explain what each of the terms in the system represent, and therefore why
it is a good model for this situation. (6 points)

Solution: Going through the terms in the equations in order, m1,2y
′′
1,2 are the inertial terms

(mass times acceleration) which show up in Newton’s law. Thus these are the one side
of the equation F = ma, and the remaining terms are the sum of the forces acting on
either skydiver. m1,2g is the force of gravity on either skydiver, and −cy′1,2 is the force
of air resistance. Air resistance acts in the opposite direction to motion, resulting in the
negative sign. k(y2 − y1 − L) is the spring force, which is proportional to the stretch on
the spring, y2 − y1 − L. The spring pulls skydiver 1 down (in the positive direction) and
skydiver 2 up (in the negative direction), accounting for the difference in signs given in
the equation. Thus the system is a nice force equals mass times acceleration model for
the two skydivers.

b. Rewrite this as a first-order system of differential equations. (6 points)

Solution: Let x1 = y1, x2 = y′1, x3 = y2, and x4 = y′2. Then

x′1 = x2

x′2 = −kx1/m1 − cx2/m1 + kx3/m1 + g − kL/m1

x′3 = x4

x′4 = kx1/m2 − cx3/m2 − kx3/m2 + g + kL/m2

c. Rewrite your system as a matrix equation. (4 points)

Solution:
x1

x2

x3

x4


′

=


0 1 0 0

−k/m1 −c/m1 k/m1 0
0 0 0 1

k/m2 0 −k/m2 −c/m2



x1

x2

x3

x4

+


0

g − kL/m1

0
g + kL/m2




