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1. Introduction

How should you work this lab? It has several sections, and a Part A and Part B.
You should read through each Part before you start working on it. Note that
both parts have a first section that describes the MATLAB commands that we
will be using in the lab. Read through those quickly, so that you know what
they are, and remember to refer back to this section as you work the lab for
help with MATLAB. This lab also includes the important points we found about
MATLAB in Lab 0. Be sure to review those as well.

Next, we give an overview of the model that we introduced in the Prelab,
and introduce the question that you will be answering in your lab report. The
remainder of each part of the lab are the exercises that constitute the work that
you will need to complete the lab report. The actual lab report assignment is
given at the end of the Part B document.

You will complete all of the work for this lab in pairs, with a partner. You
will write your lab report together, and submit just one copy of that.

2. Matlab

First, recall the basic rules we learned about MATLAB in Lab 0, which are given
in the boxed figure below.

The MATLAB commands we use in this lab are ode45, plot, and related
commands to adjust and decorate the graphs we are plotting. These are
(re)introduced below.

2.1. ode45. The function ode45 generates an approximation to the solution to
an initial value problem y ′ = f (t, y), y(t0) = y0. The command is

>> [tsol,ysol] = ode45( func handle, [tmin,tmax], initial v );

for example, to solve y ′ = 2y , y(0) = 1, on 0 ≤ t ≤ 5, we would use
>> [tsol,ysol] = ode45( @(t,y) 2*y, [0, 5], 1 );

Note that we could define the function handle and then plug it in to ode45:
>> f = @(t,y) 2*y;

>> [tsol,ysol] = ode45( f, [0, 5], 1);

The output from ode45 is a list of two arrays: the first gives the t values
at which the numerical approximation was found, and the second the y val-
ues of the approximation. Thus, in the example here, tsol(1) is the first t
value at which we have an approximation (which will be t0) and ysol(1) the
corresponding y value (y0), etc.
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Important MATLAB information

(1) MATLAB requires operators: * for multiplication, etc.
(2) In MATLAB, every variable is a vector (array), or matrix.
(3) You can get components of one of these vectors by indexing

them with an integer index that indexes from one: v(3), or
A(1,2).

(4) MATLAB provides a list of all defined variables in the current
session in the Workspace window. The variable ans is used for
any unnamed calculation. Note that it gets overwritten with the
next unnamed calculation.

(5) Consistent with MATLAB’s world-view, functions and operators
are vectorized: thus, if t is a vector of values, sin(t) returns
a vector of the sine of those values. Similarly, operators such as
* and ^ will perform matrix multiplication and exponentiation.
To apply these element-by-element, which is what we will want
to do most of the time in this course, prepend a period: thus
t.^ 2 is a vector with each element of the vector t squared.

(6) To pass a function to another function, use a function handle, for
example, @sin. We can define an anonymous function as @(t)
t^ 2 (a function that squares every element of the input), or, if
it is a function of two variables, @(t,v) 8.730 - 0.721*v (or
similar).

(7) We can run any MATLAB script file by referring to it by name in
our scriptfile, or by typing it at the command prompt (>>). We
will do this in many labs to avoid having to retype commonly
used functions many times.

2.2. plot. The function plot is
>> plot( t values, y values );

for example, to plot the numerical solution suggested above,
>> plot( tsol, ysol );

Recall that plot supports arguments that determine the appearance of the
graph:

>> plot( tsol, ysol, ’-b’, ’LineWidth’, 2 );

2.3. axis. The axis command allows you to set the x and y domains of a plot:
>> axis( [xmin xmax ymin ymax] );

for example,
>> axis( [0 50 0 12] );

2.4. hold. With hold on, retain all previous plots on the current axis, even
as more are plotted. With hold off, replace the current plot with a newly
generated one:

>> plot( t values1, y values1 );
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>> hold on;

>> plot( t values2, y values2 );

>> hold off;

2.5. title, xlabel, ylabel. Set the title, x- and y -axis labels for an existing plot:
>> title( ’Solution of y’’ = f(t,y)’ );

>> xlabel( ’t’ );

>> ylabel( ’y’ );

2.6. legend. Set the legend for the plot:
>> legend( ’label for 1st plotted function’, ’label for 2nd’

);

Provide as many labels as there were data sets plotted in the graph.

3. Background

In this lab, we are studying the Gompertz equation, a first-order ordinary differ-
ential equation which models the growth of cancerous tumors,

dy

dt
= ry ln(K/y).

The constants r and K in this equation are positive. The function y(t) gives
the volume of the tumor at time t. The initial condition, y(0) = y0, must be
positive (that is, greater than zero), and it is reasonable to pick some arbitrary
small value for that.

4. Lab Report

In your lab report, you will write a paper that looks at the behavior of solutions
to the Gompertz equation, and what it predicts about the growth of a cancer
tumor. While we are able to solve the Gompertz equation exactly, this is not
the case for many nonlinear differential equations, and we therefore look at
how we can approximate the Gompertz equation by expanding the nonlinearity
in a truncated Taylor series, and you will look at what that analysis tells you
about the expected behavior of the Gompertz equation, and when the resulting
approximations are valid. As you work through the lab, you will want to think
about how the exercises you are doing provide insight on these aspects of the
equation. The details of the report are described at the end of Part B of the
lab.

5. Part A Exercises

Exercise 1. Choose positive values r1, r2, K1, K2, and make a single plot of four
curves, each a solution to the Gompertz equation with initial value y(0) = 1.
Use ode45 to find these solutions (see section 1 if you do not remember how
to do this). There should be one for each combination of r and K . What are
the equilibrium solutions in each case?

Note that in MATLAB,
log(x) is the natural log
function ln(x).
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Your figure will be easiest to read if your choices for K1 and K2 are not too
far apart. Notice what the effect of different r and K are on the solutions to
the differential equation.

Exercise 2. Next, take r = 0.1 and K = 10 and plot solutions to the Gompertz
equation, generated with ode45, for a number of different initial conditions:
y(0) = 0.1, 1, 5, 8, 10, and 15. Does the qualitative behavior of the solu-
tions change with different initial conditions? Do the curves look like a known
function?

Exercise 3. Finally, in the prelab we found approximations to the Gompertz
equation by expanding the log term, and the other term in y , in terms of (y−K ).
Check that you both have the same approximations before proceeding. For the
following, take r = 0.1 and K = 10.

Generate solutions, using ode45, for the approximations to the Gompertz
equation found truncating the series expansion at n = 1, n = 2, n = 3, and
n = 4. (Note: you may get an error with one of these. If you do, try solving on
a smaller range of t values.) Plot the solutions, along with the ode45 solution
for the full Gompertz equation. What happens as n gets larger?

Note that n = 2 does not result in the same solution behavior as the other
approximations why is that? Work out y ′ when t = 0 for the n = 1, n = 2, and
n = 3 approximations. What does that tell you?


