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1. Model and Objectives

1.1. Model. In this lab, we will study the Gompertz equation, a first-order
ordinary differential equation which models the growth of cancerous tumors:

(1)
dy

dt
= r y ln(K/y).

The constants r and K in this equation are positive. The function y(t) models
the cell population of the tumor at time t.

1.2. Objectives. In this lab our goals are to see some connections with the
material we’ve seen in calculus, understand how these may allow us to explore
the behavior of solutions to nonlinear differential equations. In particular, we
want to:

• learn how we can approximate a nonlinear ordinary differential equation
(ODE) with a simpler (usually linear) ODE by using a Taylor polynomial
(the truncation of a Taylor series) to approximate the nonlinear terms,1

and

If you don’t remember Tay-
lor series, don’t worry! We
(re)introduce them to you
in this prelab.

• build a sense of how solutions to linear equations behave, and how this
appears in nonlinear equations.

In addition, we will see in passing how Taylor series and Taylor polynomials can
be used to approximate the solutions to an ODE.

2. Pre-lab

2.1. Taylor series. In our calculus classes, we learned how to construct Taylor
series: that is, for a function f (x) which has derivatives of all orders at a point
x0, we found a series of the form

(2) a0 + a1(x − x0) + a2(x − x0)2 + · · · =
∞∑
n=0

an(x − x0)n = f (x).

The series on the left-hand side we call the Taylor expansion of f (x) near x0.
Note that (2) is an equality, which means that f (x) and the series are the same
function in some neighborhood of x0.

“Neighborhood” means an
interval around x0 on which
the series converges.

1This is an introduction to a fundamental idea we will be seeing in class throughout the rest
of the semester: that we can gain a qualitative understanding of nonlinear equations locally,
by linearization.
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Example 1: The function sin x is equal to the following infinite series:

sin(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1,

and the equality holds for all real numbers x. What is x0 in this case?
What are the coefficients an? In particular, what is a2?
The expansion is in terms of (x − 0)k , so x0 = 0. The coefficients an are
zero for all even n (and n = 0), and are ±1/n! for odd coefficients. The
first, a1, is positive, and subsequent terms alternate sign.

We can see how the series generates the function as we add terms to the sum;
this is shown in the figure, below.
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We see that the Taylor polynomials obtained by truncating the series to different
values of n resemble the sine function better and better; if we continued to an
infinite number of terms, we would have exact equality.

A consequence of the equality (2) that will be significant in this lab is that all
derivatives of f (x) and of the series are also equal as functions—in particular,
they must be equal at the point x = x0. This fact can be used to calculate the
coefficients an, as we show in the following example.

Example 2: How are the values of an related to f and its derivatives?
Note that if we plug x = x0 into both sides of (2) we are left with
f (x0) = a0 (this tells us the value of a0!). Taking the derivative of each
side of (2), we have

f ′(x) = 0 + a1 + 2a2(x − x0) + 3a3(x − x0)2 + · · ·

=
∞∑
n=1

n an (x − x0)n−1,

so that f ′(x0) = a1, that is, a1 = f ′(x0). Continuing with the second
derivative, we have

f ′′(x) = 2a2 + 6a3(x − x0) + · · · =
∞∑
n=2

n(n − 1) an (x − x0)n−2,

and f ′′(x0) = 2a2—so a2 = 1
2 f ′′(x0). Another derivative gives us a3 =

1
6 f ′′′(x0) = 1

3! f ′′′(x0). What happens as we continue taking derivatives?
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Each derivative pulls down another factor from the exponent, so that after
k derivatives we have ak = 1

k! f (k)(x0).

Thus, Example 2 tells us the coefficients of a Taylor series of a known function
f , and thus that the series (2) is

(3) f (x) =
∞∑
n=0

an(x − x0)n =
∞∑
n=0

1

n!
f (n)(x0) (x − x0)n.

In practice, of course, it’s difficult to work with a series which has an infinite
number of terms, so we will often truncate the series to some number of terms
and use that as an approximation to the function we want. In particular, as we
will see repeatedly in this course, linear approximations often allow us to work
with problems that would otherwise be intractable.

Exercise 1: The Taylor series for ln(y) about y = 1 is

(4) ln(y) =
∞∑
n=1

(−1)n+1

n
(y − 1)n

for y − 1 ∈ (−1, 1] (that is, y ∈ (0, 2]). What polynomials do we get
if we truncate this series at n = 1? n = 2? n = 0 (hint: the n = 0th
approximation is defined!)? Compare the value of each of these with that
of ln(y) at y = 1.1 and y = 1.75. Note how the error differs at the
different y values.

We call the approximations we found in Exercise 1 Taylor polynomials, for ob-
vious reasons. When we truncate the Taylor series to a polynomial of degree n,
we say the approximation is “of order n,” or “nth order.”

2.2. Approximating nonlinear differential equations. At various times, we
use Taylor polynomials to find approximations to nonlinear differential equations.
This is a powerful tool, because linear equations are (in general) easy (or easier)
to solve, and the insight we gain from the linear problem is usually applicable
to the nonlinear system when the approximation is a reasonable one.

In particular, we will look for an approximation to our differential equations
near critical points. We explore this idea in Exercises 2–4:

We discuss critical points in
[BB, §§1.2,2.5]. They are
constant solutions, which
we also call equilibrium so-
lutions.

Exercise 2: Find the critical points of the Gompertz equation (1), by noting
that at a critical point y ′ = 0 and solving. (Is y = 0 a critical point?
Does it solve the algebraic equation you get?)

Once we have critical points, we will look for an approximation to the original
equation by expanding nonlinearities using their Taylor series about the critical
point.

Exercise 3: Find the first four terms of the Taylor series for ln(Ky ) about

y = K by using the formula we found in Example 2, (3).
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Now we have done the hard part: we have a way to approximate the log term
as a polynomial! Notice that there’s one more piece that we need to resolve: we
have now y ′ = r y

∑∞
n=1 an(y −K )n, where the an are determined by your work

in Exercise 3, but note that to make the entire right-hand side into a Taylor
series we need to rewrite y = K + (y − k). This will ensure that all terms in
our expression that involve y will be in terms of y − K , which is important for
the approximation to be useful.

Exercise 4: Plug in your expression for the expansion of ln(Ky ) into the

equation y ′ = r (K +(y−K )) ln(Ky ). Find approximations to the equation

of order n = 0, n = 1, n = 2, and n = 3 (that is, find equations that
truncate the resulting expression at the constant, linear, quadratic, or
cubit terms in the expansion).

In general, we will use this technique to obtain a linear equation, which we can
then solve. The solution that we obtain to this simpler equation will be a good
approximation to the solution to the original equation near the expansion point
x0 (here, y0 = K ), as suggested by our work in Exercise 1.

Finally, note where you would expect an approximation obtained by the trun-
cation that you did in Exercise 4 to be valid. We omitted higher-order terms in
(y −K )n, so we want those terms to be small for the approximation to be valid:
that is, we want y to be close to K . If y is not close to K , we would expect
the approximation not to be a good one.

Do we have to expand near a critical point? No! However, critical points
are usually where interesting behavior of the system is captured. We can do
the same analysis near other points, however, and explore this briefly in the
following exercise.

Exercise 5: By writing y = 1 + (y − 1) and expanding ln(y) about y = 1
(using the Taylor series from Exercise 1, equation (4)), find order n = 0,
n = 1, and n = 2 approximations to the Gompertz equation at y = 1.

2.3. Series solutions to differential equations. Another way we can use Tay-
lor series is to look for a series that is the solution to a differential equation.
For example, if we have y ′ = c y , with y(0) = 1, then we are saying there is a
function y(t) that satisfies this equation and initial condition. If this function
has a convergent Taylor series y(t) =

∑∞
n=0 antn in a neighborhood of the ini-

tial condition, we should be able to follow the steps used in Example 2 to find
the an and thus find the solution as a Taylor series. This is largely an exercise
in bookkeeping, but it can sometimes provide insight on the behavior of the
solutions to a differential equation.
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