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1. Matlab

MATLAB commands we use in this lab are below, and include an add-on function
dirfieldsys2. Excepting dirfieldsys2, these are the same commands that
we have used before, but we will be using them now with systems and their
(vector) solutions; here we introduce them in this context. The lab assignment
follows this section.

1.1. dirfieldsys2. This isn’t a native MATLAB command; download it from the
labs page. The command dirfieldsys2 plots the direction field for a system
of two first order equations x ′ = f (x , y), y ′ = g(x , y). The command is

>> dirfieldsys2(f handle, g handle, [xmin, xmax], [ymin, ymax])

for example, to plot the direction field for the system x ′ = x y , y ′ = sin(x + y)
on the domain x ∈ [−3, 3], y ∈ [0, 5], we would use

>> dirfieldsys2(@(x,y) x.*y, @(x,y) sin(x+y), [-3,3], [0,5])

We can also define function handles first and then use them in dirfieldsys2:
>> fxy = @(x,y) x.*y;

>> gxy = @(x,y) sin(x+y);

>> dirfieldsys2( fxy, gxy, [-3, 3], [0, 5] )

(Note: dirfieldsys2 will interpret all operations in the input function handles to
be pointwise, that is, will interpret both x*y and x.*y as x.*y. This should be
what you want, and you should be able to ignore this comment.)

1.2. ode45. We’ve used ode45 to solve first-order initial value problems of the
form x ′ = f (t, x), x(0) = x0; the command is [t,x] = ode45(@f(t,x)...,

[t0 t1] x0), where the ... give the definition of the function on the right-
hand side. To solve a system of equations, we call ode45 with a vector x

and vector f. For example, suppose we want to solve the initial value problem
x ′ = y , y ′ = x sin(ty), with x(0) = 1, y(0) = 0. In vector form this is

x′ =

(
x
y

)′
=

(
y

x sin(t y)

)
= f(t, x , y), with x(0) =

(
x(0)
y(0)

)
=

(
1
0

)
. Note

that the first component of the vector x is the original variable x , and the second
component is y . Thus, using ode45 we will have a vector x where x(1) is x
and x(2) is y . Thus, to solve the system we use

>> [tsol,xsol] = ode45( @(t,x) [x(2); x(1)*sin(t*x(2))],...

[0 5], [1; 0]);

(the elipses, ..., are just to break the line here), or, defining the function on
the right-hand side first,

>> f = @(t,x) [x(2); x(1)*sin(t*x(2))];
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>> [tsol,xsol] = ode45( f, [0 5], [1; 0]);

The final thing to note is that xsol now has two columns: the first column
gives the x values at the t values in tsol, and the second gives the y values.
Thus

>> xsol(3,2)

returns the value of y at the third time step.

1.3. ode15s. This is another numerical solver for differential equations, and
takes exactly the same arguments as ode45. We will want to use it, in general,
when we’re solving problems which have solutions that change rapidly in some
portions of the domain on which we’re solving. This is discussed below.

1.4. plot. We use plot exactly as we did before. Note, however, that if we
had generated a solution to a system using ode45 as above, we could then plot
the trajectory in the phase plane with

>> plot( xsol(:,1), xsol(:,2) );

(which should make sense—the : just gives all values along that index, so we’re
just giving a vector of x values, and then a vector of y values).

1.5. axis. The axis command sets the range for the x and y axes of a plot:
>> axis( [ -3 3 -2 2 ] );

sets the axis scale for the current plot to −3 ≤ x ≤ 3 and −2 ≤ y ≤ 2.

2. Part A

Exercises in this section are to be completed by pairs. They will allow you to
complete Part B of the lab, and will provide information for your lab writeup.
At the end of Workday 1, pairs should present their solutions to Exercises 2 and
3 to each other. Note that material from Part A appears in one of your written
homework problems and will be relevant for Part B.

3. Background

In this lab we are considering the van der Pol oscillator, a model of an active RLC
circuit with a nonlinear resistor that dissipates energy when the amplitude of
the current is high, and pumps energy into the system whenever the amplitude
of the current is too low. The resulting differential equation we are using is

(1) x ′′ + µ(x2 − 1)x ′ + x = 0,

which we are calling “the” van der Pol equation. In Exercise 2 in the prelab you
wrote this as a system of equations, and at the end of the prelab we linearized
the system to obtain the linearized version of the equation,

(2)
x ′ = y
y ′ = −x + µy .

In the following we look at the nonlinear and linear systems, and explore their
solutions, similarities and differences.
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Before starting work, download the file dirfieldsys2.m (described above)
from the lab page, and check with your partner to confirm that you have the
same system for the van der Pol equation.

4. Reflection

For this lab you are not submitting a formal lab writeup. Instead, you will
submit a shorter “reflection” at the end of Part B of the lab. In this you will
be considering the three questions

(a) How is the linearized system obtained from the nonlinear van der Pol
system? What does this tell you about what it should be able to tell
you about the behavior of the nonlinear system?

(b) How is the description of the nonlinear resister in the Prelab and back-
ground sections of Parts A and B reflected in the phase portraits that
you generated in this lab?

(c) In the van der Pol equation, x is a current in the circuit. What will a
graph of x look like as a function of time, t, given your phase portraits
for the linear and nonlinear systems?

As you work through the following you may wish to keep these questions in
mind.

5. Part A Exercises

All exercises are to be completed with µ = 1.

Exercise 1. Plot the direction field for the nonlinear van der Pol system you
obtained in the prelab. Save one copy of the plot with the x- and y -axes
restricted to the interval [−1, 1] and a second copy restricted to [−3, 3]. On
a second graph, plot the direction field for the linearization of the van der Pol
system, (2), with the x- and y -axes restricted to the interval [−3, 3]. What
information does the direction field for the linearized system give you about
the nonlinear system? (That is, where are the direction fields for the nonlinear
system similar to and different from that for the linearized system? Why does
this make sense?)

Exercise 2. Pick an initial condition (x0, y0) close to the origin and find a
solution to the van der Pol system with ode45. Plot this solution trajectory
in the phase plane. Note that this tells you the direction of motion along
the direction fields that you found in Exercise 1. How is the behavior of the
trajectory consistent or inconsistent with the linear and nonlinear direction fields
that you obtained in exercise 1? Note that if you extend your solution for large
enough t, the positive x-intercepts of this trajectory converge to some value x∗.
Estimate this value from your plot.

After you have found x∗, add a solution trajectory from an initial condition
far from the origin to your graph. Use a different line type or color so that you
can distinguish this from your first trajectory. How does it behave?
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Exercise 3. One way to find the value of x∗ would be to zoom in on the point
where the trajectories cross the x-axis. Do this on your plot from exercise 2,
either by using the zoom tool in the plot window or by using the axis command.
Your x-range should be something on the order of x∗±0.01. Do the trajectories
cross? Is that really possible?

If the “possibility” of cross-
ing trajectories isn’t obvi-
ous, think about the exis-
tence and uniqueness theo-
rems, Theorems 3.6.1 and
2.4.2 in [BB, §§3.6,2.4],
and Remark 2 that follows
Theorem 2.4.2. These say
something about whether
solutions can cross.

What we’re seeing here is an issue of the precision of the approximate solution
generated by ode45. Graph the same trajectories, but generate them with
ode15s instead of ode45—ode15s is another numerical solver that generates
approximate solutions to differential equations, but it deals better with rapidly
changing solutions (in particular, with places like the corners in the nonlinear
trajectories that we see in Exercise 2). With this, are the trajectories more
properly separated?
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