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1. Model and Objectives

1.1. Model. A van der Pol oscillator is a model of an active RLC circuit with
a nonlinear resistor that dissipates energy when the amplitude of the current is
high, and pumps energy into the system whenever the amplitude of the current
is too low. The behavior of the resistor is described by a nonlinear function
f (x), where x is dimensionless current. As a function of time, the current x(t)
satisfies the second order differential equation

x ′′ + µ
df

dx
x ′ + x = 0,

where µ is a positive constant. In this lab, we will take f (x) = 1
3x

3 − x so that
the resulting equation is

If you haven’t worked with
a second-order differential
equation like this before,
or haven’t explored sys-
tems of differential equa-
tions, that’s ok! We’ll de-
velop what we need here.

(1) x ′′ + µ(x2 − 1)x ′ + x = 0.

Note that the effect of the nonlinear resistor is modeled by the x ′ term.1 For
the duration of the lab, when we refer to “the” van der Pol equation, we will
mean equation (1).

1.2. Objectives. In this lab our goals are to explore some of the fundamental
links between higher-order differential equations and systems, and to see how
linear and nonlinear systems are related and different. In particular, we want to

• See how to convert a second order ODE into a system of first order
ODE’s.
• See how we can linearize a nonlinear first order system to get a (solv-

able!) linear system, as we did in Lab 1.
• Compare local and global behavior of a system and see what the lin-

earization of the system tells us about the behavior of the nonlinear
system, and what it is unable to determine.

1We can see this from the equation by rewriting it as x ′′ = µ(1− x2)x ′− x . The resistance
(friction) term is the x ′ term, and if |x | < 1 the term is positive—adding energy to the
system—and if |x | > 1 it is negative—reducing energy. A normal resistor would give a term
like kx ′, with k < 0, and would always reduce the energy in the system.
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2. Pre-Lab

2.1. First Order Systems and Second Order Equations. We can convert a
given a linear second order equation

(2) x ′′ = p(t)x ′ + q(t)x + g(t)

into a first order system by defining a new function y(t) = x ′(t). Then y ′(t) =

See [BB, §3.2 (p. 140)] to
review the relationship be-
tween second order equa-
tions and first order sys-
tems! We cover all of this
in more detail in chapter 4.

x ′′(t), so y must satisfy the first order equation y ′ = p(t)y + q(t)x + g(t).
Therefore, if x is any solution to the second order equation, the pair of functions
x and y must satisfy the first order system

(3)
x ′ = y

y ′ = p(t)y + q(t)x + g(t)

Conversely, if x and y satisfy this system of equations, then x is a solution to
the second order equation (2).

We will often want to write the system (3) in terms of a vector, x(t) =
(
x(t)

y(t)

)
.

Note that this just takes the dependent variables in our system, x and y , and
uses them as the components of the two element vector x. If we similarly define

b(t) =
(

0

g(t)

)
and the matrix A =

(
0 1

q(t) p(t)

)
, we may express system (3) in

the form x′ = Ax + b.

Exercise 1: In a RLC circuit with constant resistance R, inductance L, and
capacitance C , we denote the total charge on the capacitor at time t
by q(t). If there is no driving voltage applied to the circuit, the charge
satisfies the linear second order equation

Lq′′ + Rq′ +
1

C
q = 0.

(Note that this is of the same form as the van der Pol equation, (1), when

For a picture of an RLC cir-
cuit and derivation of this
model see p. 213 of [BB].

f ′(x) = 1, R = µL and C = 1/L.) The current in the circuit, u(t), is
the derivative of q(t) (that is, u(t) = q′(t)). Write down a first order
system for q and u, in matrix form, which is equivalent to the second
order equation for the RLC circuit.

We can likewise convert nonlinear second order equations, such as the van der
Pol equation (1), into first order systems, but cannot write the resulting system
in the form x′ = Ax + b.

Exercise 2: Write the van der Pol oscillator (1) as a first order system in x
and y = x ′ (that is, a system like (3)). Explain why we cannot write it in
the form x′ = Ax with A being a matrix with entries that do not depend
on x or y .
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2.2. Linearization. Even though nonlinear homogeneous systems cannot be
written in the form x′ = Ax, still we will be able to use linear equations to
predict the behavior of solutions near the critical points of a nonlinear system.
Critical points of an autonomous system

x ′ = f (x , y)
y ′ = g(x , y)

are the pairs (x , y) such that both f (x , y) = 0 and g(x , y) = 0—so that they
are the equilibrium solutions to the system (see [BB, §3.6 (p. 191)]).

Exercise 3: The motion of a pendulum (without damping) can be described
by the nonlinear second order equation θ′′ + ω2 sin θ = 0, where θ is the
angle from vertical and ω is a positive constant. Convert this equation to
a first order system and find the critical points. Let x = θ and y = θ′ in
your system.

In Lab 1, one of the techniques we used was to approximate solutions and dif-
ferential equations by replacing a nonpolynomial function f (x) with truncations
of its Taylor series centered around some point x0. The first order truncation
gives the best linear approximation to f (x) at x0.

To study the behavior of solutions in a neighborhood of a critical point of a
nonlinear system, we replacing the nonlinear functions in the system with their
linear approximations around the critical points. This is called the “linearization”
of the system at that critical point.2 Linearization gives the mathematical
description of the behavior seen near critical points. We will learn about this
topic in more depth in [BB, §3.6] and [BB, §7.2].

This “linear approximation”
to f (x) is, in fact, the tan-
gent line to f (x) through
(x0, f (x0)). Try checking
this for yourself by calcu-
lating the tangent line ex-
plicitly. Remember that the
equation of a line is y =
mx + b, and that m and b
can be determined uniquely
by the slope of the line and
a single point on the line.

Example 1: Linearize the nonlinear pendulum of Exercise 3 at the critical
point (0, 0).
The only nonlinear function in the system is sin x , which we will replace
with the first order truncation of its Taylor series around x = 0 (because
that’s the critical point). Recall that the Taylor series of sin x , expanded
around x = 0, is

sin x =
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1

and the linear truncation is simply sin x ≈ x . Therefore, the linearization
of your solution to Exercise 3 near (0, 0) is

(4)
x ′ = y
y ′ = −ω2x

2In this lab, we see only examples where the nonlinear parts of the system are functions
of x alone. For more general systems, we will have to learn how to construct Taylor series of
functions of two variables—we will do this in [BB, §7.2].



4 LAB 2: FIRST ORDER SYSTEMS AND THE VAN DER POL OSCILLATOR

Turning now to the van der Pol system, the only critical point is (0, 0),
and since the system consists only of polynomials, the linearization at (0, 0) is
obtained simply by dropping the nonlinear terms from the right hand side of the
equations:

(5)
x ′ = y
y ′ = −x + µy .

In matrix form we write this as x′ =
(

0 1
−1 µ

)
x. We will use both (5) and the

original van der Pol equation (1) (and its formulation as a system, which you
found in Exercise 2) in the rest of this lab.
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