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1. Introduction

Recall that before working each part of the lab you should read through it. Both
of Parts A and B have a first section that describes the MATLAB commands
that we will be using in the lab. Read through those quickly, so that you know
what they are, and remember to refer back to this section as you work the lab
for help with MATLAB.

Next, we give an overview of the model that we introduced in the Prelab,
and introduce the question that you will be answering in your lab report. The
remainder of each part of the lab are the exercises that constitute the work that
you will need to complete the lab report. The actual lab report assignment is
given at the end of the Part B document.

You will complete all of the work for this lab in pairs, with a partner. You
will write your lab report together, and submit just one copy of that.

2. Matlab

MATLAB commands we use in this lab are eig, ode45 and plot.

2.1. eig. This MATLAB command calculates the eigenvectors and eigenvalues
for a matrix:

>> [ evecs, evals ] = eig( mat )

The returned variables evecs and evals are both matrices. The columns of
evecs are the eigenvectors of the matrix mat, and the diagonal entries of

evals are the corresponding eigenvalues. The matrix

(
1 5
2 4

)
has eigenval-

ues λ1,2 = −1, 6, with eigenvectors v1 =
(
−5 2

)T
and v2 =

(
1 1

)T
, so that

The notation T indicates
the transpose of a matrix
or vector, which just swaps
the rows and columns of the
matrix or vector. Thus the
transpose of a row vector is
a column vector! We use
transposes here as a format-
ting trick to avoid wide line
spacing around the vectors.

>> [ evecs, evals ] = eig( [ 1 5; 2 4 ] )

returns evecs = [-0.928 -0.707; 0.371 -0.707] and evals = [-1 0; 0

6]. Note that MATLAB normalizes eigenvectors to have unit length; to get vec-
tors with unit entries, divide by the smallest value, e.g.,

>> evec1 = evecs(:,1)/evecs(2,1)

makes evec1 be the first column of the matrix evecs (recall indexing is (row,
column)), with each entry divided by the first entry in the second row. The
result is evec1 = [-2.5; 1]! Finally, note that if you just type

>> eig( [ 1 5; 2 4 ] )

the returned value is a column vector of just the eigenvalues; thus we’d get ans
= [-1; 6].
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2.2. format. Set the output format for MATLAB calculations. format long

results in answers being shown to 15 digits after the decimal point; format, or
format short, shows four digits.

2.3. ode45. Finds a numerical approximation to a differential equation or sys-
tem of equations:

>> [tsol,xsol] = ode45(@(t,x) [rhs1 ;rhs2 ], [tmin,tmax], [x0;y0]);

For x′ = Ax, if we’ve defined the matrix amat to be A, we can use
>> [tsol,xsol] = ode45(@(t,x) amat*x, [tmin,tmax], [x0;y0]);

2.4. plot. Plot one vector against another; e.g., to plot component plots from
output from ode45,

>> plot( tsol, xsol(:,1), ’-k’, tsol, xsol(:,2), ’--k’ );

3. Background

In this lab we are considering a model for a laser; with N giving the population
inversion (difference between the number of atoms in a higher energy state and
in the base, ground-level state) and P the intensity (scaled number of photons),

(1)
N ′ = γ(A− N(1 + P))

P ′ = P(N − 1),

where γ and A are positive constants.
We derived this system in the Pre-Lab; we describe the governing equations

from each step of the derivation below. The atoms in the laser can be in one
of three energy states, E1, E2 and E3. In the absence of an energy source
or lasing photons, the number of atoms in each energy state are given, with

n =
(
n1 n2 n3

)T
, by

(2) n′ = Gn,

where

G =

0 γ21 γ31
0 −γ21 γ32
0 0 −γ32 − γ31

 .

For ruby lasers, which we consider here, γ−121 = 3 ms and γ−132 = γ−131 = 0.1 µs.
To create the laser, we add an energy pump, which stimulates atoms to move

between the ground and third energy states, so that

(3) n′ = (W + G)n

where W =

(
−Wp 0 Wp

0 0 0
Wp 0 −Wp

)
.

Finally, we consider the number of photons in the system that can cause the
release of additional photons through atoms changing from states E2 to E1;
adding this effect and introducing the population inversion variable n = n2−n1
leads to (1) after we rescale the variables.
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4. Lab Report

In your lab report, you will write a paper that looks at the mathematics of the
models developed in the Pre-Lab, and how they describe the functioning of the
laser. In particular, you will examine

• What the models for the number of atoms in each energy state are, both
without and with the energy pump, and how your eigenvalue analysis
and solution plots illustrate the physical behavior of the system in either
case.

• What additional effect the nonlinear system includes, what the equi-
librium solutions of the system are, and what those suggest about the
possible long-term behavior of the laser.

• How the stability of the different equilibrium solutions depends on the
parameters in the problem, and what the linearization tells you about
the stability and expected behavior or the nonlinear system.

• What the effect of a nonconstant parameter A is on the laser’s output
intensity, how this is similar to the phenomenon of resonance, and how
the characteristics of the output intensity in this case may or may not
be desirable.

As you work through the lab, you will want to think about how the exercises
you are doing provide insight on these aspects. The details of the report are
described at the end of Part B of the lab.

5. Part A Exercises

Write out the matrices G and W, using units of ms. Let Wp = 100 ms−1.
Check that both you and your partner get the same thing. Also check that you
got the same critical points in your Pre-Lab, Exercise 3.

Exercise 1. Use MATLAB’s eig command to find the eigenvalues and eigen-
vectors of the 3×3 matrix G. Thinking about what the solution n will be to (2),
what do the eigenvalues and eigenvectors tell you about the long-term behavior
of the system? In particular, in what energy state do the atoms in the laser end
up? Is this consistent with your expectations given what the system is mod-
eling (recall from the Prelab that G captures the effect of spontaneous decay
between energy states)? (You may want to use format long when looking at
the eigenvalues.)

Next repeat your analysis for the materix G + W. How is result different?

Exercise 2. Numerically solve the system (2) using ode45 and the initial con-

dition n(0) =
(
1/3 1/3 1/3

)T
. Use 0 ≤ t ≤ 10. Plot your solutions for n1,

n2, n3, and the population inversion n = n2 − n1, against time. Compare your
result with your prediction from exercise 1.

Then numerically solve the system (3) using ode45 and the initial condition

n(0) =
(
1/3 1/3 1/3

)T
. Use 0 ≤ t ≤ 0.1. Plot your solutions for n1, n2,
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n3, and the population inversion n = n2 − n1. Compare your result with your
prediction from exercise 1, and the result for the system with only G, (2).

Is it reasonable to assume that n3(t) = 0 for all t?

Exercise 3. Finally, numerically solve (using ode45) the system (1) with A =
0.5 and γ = 0.01, using the initial conditions (N(0),P(0)) = (−0.01, 0.01).
Based on your work in exercise 2, explain why the initial condition for N might
be reasonable. How is the behavior of N here different from what you saw for
n in exercise 2? What effects are included in (1) that are not included in your
work in exercises 1 and 2?
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