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1. MATLAB

MATLAB commands we use in this lab include the following.

1.1. eig. Finds the eigenvectors and eigenvalues for a matrix.
>> [ evectors, evalues ] = eig( matriz )

1.2. format. Set the output format for MATLAB calculations.
>> format long

1.3. ode45. Finds a numerical approximation to a differential equation or sys-
tem of equations; for a system the first argument returns a vector.
>> [tsol,xsol] = ode45(@(t,x) [rhsi;rhs2], [tmin,tmax], [x0;y0]);

1.4. plot. Plot one vector against another; e.g., to plot component plots from
output from ode45,

>> plot( tsol, xsol(:,1), ’-k’, tsol, xsol(:,2), ’--k’ ); and
a trajectory in the phase plane is given by

>> plot( xsol(:,1), xsol(:,2), -k’ );

2. BACKGROUND

In this lab we are considering a model for a laser; with N giving the population
inversion (difference between the number of atoms in a higher energy state and

in the base, ground-level state) and P the intensity (scaled number of photons),
) N =~(A—- N(1+ P))
W P =P(N —1),

where v and A are positive constants.
These governing equations follow from a model for the number of atoms in
the laser material (ruby) that are in each of three energy states,

(2) n’ = Gn,

which is modified by the addition of an energy pump that stimulates atoms to
move between states Ej (the ground state) and E3 (the highest energy state),
to get

(3) n’ = (W + G)n.



2 LAB 3: LASERS, LINEAR SYSTEMS, AND HARMONIC OSCILLATORS, PART B

In these,
0 721 V31 -W, 0 W,
G= 0 —721 Y32 and W = 0 0 0
0 0 —2—93 W, 0 —-W,

We take 7o' =3 ms, 735" = 75, = 0.1 us, and W, = 100 ms™L.

Considering the number of photons in the system that can cause the release
of additional photons and rescaling variables appropriate leads to (1). You found
the critical points of (1) in the Pre-Lab. Linearizing around (N, P) = (1, A—1)
gives the system

U = —vy(Au+v)

@ V= (A-1)u.

In this part of the lab we look at what this linearization (valid when N and P
are near 1 and A — 1, respectively) tells us about the behavior of the nonlinear
system, (1), and generalize (1) to allow for a non-constant A.

You and your partner are responsible for completing a lab report as described
in section 6, due at the beginning of Workday 1 of the following Lab.

3. EXERCISE 1

For this and the following exercises, use v = 0.05, and take (N(0), P(0)) =
(0.01,0.01).

In the Pre-Lab and Part A, Exercise 3, and possibly in the written homework,
you considered the critical points of (1) and their stability. To further investigate
their stability, generate graphs of the behavior of N and P in system (1) with

=0, 0.5, 1, 1.5 and 3. Note how the result illustrates a transition in the
stability of the different critical points, and how this is consistent with your work
in the Pre-Lab and Part A.

When do you see (decaying) oscillatory solutions? What does this tell you
about the eigenvalues of the linear system (4)7

4. EXERCISE 2

Review your work in the Pre-Lab and, possibly, written homework, where you
found the equations for and, possibly, solutions v(t) and Pgrp. Verify that you
have the same result as your partner. If you haven't already, find the eigenvalues
of (4) (using eig if you like), or the second order equation for v your found in
the Pre-Lab, Exercise 4. Verify that this is consistent with your observations in
Exercise 1, above.

Recall that Pgo is the solution for v(t) (the intensity) in the linearized laser
system. To get a more concrete sense of how Pgro is a good approximation to
the nonlinear solution P, consider v = 0.05 and A = 3. Plot, in different graphs,
the solution P(t) from system (1) and Pro(t). Notice that if you consider only
t > t1, for some value t;, the graph of P(t) looks like the graph of Prp. Note
when you expect this to be—that is, for what values of P should Pro resemble
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P? Plot both P and Pgo for larger values of t (why do we pick larger values
of t?) to show that the graphs are similar. How do they differ?

5. EXERCISE 3

Now suppose that the parameter A is no longer constant, and is instead given
by A(t) = Ag + 2acos(wt).! We expect a < 1, so that this results in a slight
oscillatory behavior in A. We will consider different values of w in the following.
To start with, plot A(t) with some Ay > 1, say, Ag = 3, some 0 < a < 1, say,
a = 0.25, and a value of w = y/7(Ap — 1). How would you expect this A to
change the intensity that you obtain from the laser? Solve (1) with this A(t)
using ode4b5 to determine what happens to the intensity, and thus how close
your expectation is.

It turns out that the amplitude of the oscillations in the long-term response
behaves very similarly to the response of a sinusoidally forced linear equation like
those we study in [BB, §4.6]. There we see that a gain rate gives the amplitude
of the response relative to that of the forcing. For this problem, there is a similar
scaling factor for the amplitude of the response,

Qay(Ag - 1)
VA0 = 1) w22 4 A3

Plot g(w) as a function of w for your Ay and a. Where does it have a maximum?
You could find this by differentiating g(w) and setting it to zero; we save you
the effort and suggest that the result is w = \/v(Ao —1). We will call this
value v. Calculate this value and verify that it seems correct.

Next plot solutions to (1) with A(t), found with ode45, with w < v, w = v,
and w > v. How does the long-term behavior of the solution change? What is
true of the case w = v7?

() g(w) =

6. LAB REPORT

Your biomedical engineering consultant job was so successful that you have been
hired by a company that is building lasers. Suppose that you have been asked
to write a report to a scientifically minded prospective customer explaining the
behavior of the lasers modeled in this lab. In your report you will want to
address:

e What the models for the number of atoms in each energy state are, both
without and with the energy pump, and how your eigenvalue analysis
and solution plots illustrate the physical behavior of the system in either
case.

e What additional effect the nonlinear system includes, what the equi-
librium solutions of the system are, and what those suggest about the
possible long-term behavior of the laser.

1Why might we want this? An example would be a in laser surgery, in which a pulsed laser
is used to cut tissue.

In [BB, §4.6] we further
investigate the behavior of
forced systems to see how
a gain function like (5) may
be found, and what it tells
us about the reponse to the
forced system!
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e How the stability of the different equilibrium solutions depends on the
parameters in the problem, and what the linearization tells you about
the stability and expected behavior or the nonlinear system.

e What the effect of a nonconstant parameter A is on the laser’s output
intensity, how this is similar to the phenomenon of resonance, and how
the characteristics of the output intensity in this case may or may not
be desirable.

Your lab report should have the following format:

I. Introduction: Summarize the purpose and contents of your report in
3-6 complete sentences. You should include the systems (3) and (1), in-
dicating what the functions in the systems are and how they are related,
but otherwise keep the technical notation to a minimum.

[I. Body: In the body of the report, you should address the points noted
above. You will want to include relevant equations, calculations, and
graphs. You should also explain how your work in math 216 allows
you to analyze this system, in particular, (1) how our eigenvalue solu-
tion methods explain the behavior of (3) and the behavior of (1) near
the equilibrium solution, and (2) how the effect of non-constant A is
related to our understanding of sinusoidally forced second-order differ-
ential equations.

[1l. Conclusion: Provide a short, several paragraph, summary of your re-
sults that ties together the work you have described in the body.
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