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1. Objectives and Instructions

1.1. Model. In this lab we are going to study a system of differential equations
which models the excitation of atoms in a lasing medium. Essentially, we will
be learning (some of) the mathematics behind how lasers work. Atomic physics
is, of course, outside of the scope of this course, but the modeling equations
are ones we are able to analyze.

The system we will be analyzing is

(1)
N ′ = γ(A− N(1 + P))

P ′ = P(N − 1)

where P is the laser’s intensity and N is the population inversion function for
atoms in the laser1, and γ and A are constants. This is a nonlinear system
which we cannot solve analytically, but we will see that for large t, the intensity
P is similar to the solution of a second order equation for a damped vibration,
and we will explore resonance in this context.

1.2. Objectives. Our goals for this lab are to extend our use of matrix meth-
ods and to further investigate the behavior of solutions to linear and nonlinear
equations. In particular, we will:

• see relationships and differences between first-order linear and nonlinear
systems; and

• investigate damped harmonic oscillations and resonance.

Note that the first of these looks at systems of equations, while to look at the
forcing that gives resonance, as we do in the second, we will look at an equivalent
single, higher-order differential equation. We have already seen that a single
higher-order differential equation can be written as a system to provide insight
on the differential equation; in this lab we also make the transformation of a
system into an equivalent second-order differential equation to provide insight
on the system.

2. Pre-Lab

In this Pre-Lab, we will see in a general sense where (1) comes from. The

The mathematics of laser
dynamics is a huge subject!
We obviously won’t be do-
ing it all here; what we need
is developed in the course of
the pre-lab, and we’ll leave
out some of the trickier de-
tails. In [EG] there’s a lot
more detail than we present
here.

three key things we need to know are: 1. that the atoms in the lasing medium
(ruby, for our work here) can be in one of three energy states; 2. that we can
add energy to the laser, so that we move atoms to a higher energy state; and

1What “intensity” and “population inversion” mean is explained in §2.2.
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3. that atoms tend to decay to lower energy states, and the energy released by
the decay can be manifest as a released photon—and when the released photons
can trigger the release of more photons, we get “lasing,” which is the release of
coherent, laser light.

2.1. Energy levels. In a ruby laser, each atom of the ruby is in one of three
energy states, which we will refer to as E1, E2, and E3. E1 is the lowest energy
level (the ground state), and E3 the highest energy. Let n1(t), n2(t), and n3(t)
be the number of atoms in each energy level at time t. Atoms in the E2 and E3

states will naturally decay to a lower level by releasing energy, so that without
external stimulation all atoms will eventually fall to the ground state E1. The
laser adds an “energy pump” that moves atoms from state E1 to state E3 and
increases the tendency of atoms in state E3 to decay to E1. The combination
of the decay and energy pump means that n1, n2 and n3 satisfy the system

(2)

n′1 = −Wpn1 + γ21n2 + (γ31 + Wp)n3

n′2 = −γ21n2 + γ32n3

n′3 = Wpn1 − (γ32 + γ31 + Wp)n3,

or, in matrix form with n =
(
n1 n2 n3

)T
,

The notation vT indicates
the transpose of the vec-
tor v. This is obtained by
flipping rows and columns:
thus, the transpose of a row
vector is a column vector:(

1 2 3
)T =

1
2
3

.

(3)

n′ = (G + W)n =

0 γ21 γ31

0 −γ21 γ32

0 0 −γ32 − γ31

+

−Wp 0 Wp

0 0 0
Wp 0 −Wp

n

=

−Wp γ21 γ31 + Wp

0 −γ21 γ32

Wp 0 −γ32 − γ31 −Wp

n.

Here the matrix G captures the effect of spontaneous decay between energy
states: the γij are the (constant, positive) rates at which atoms spontaneously
decay from level i to level j . And the matrix W gives the effect of the energy
pump.

Example 1: Why are the entries in the second row and column of W all
zero?
The matrix W models the effect of the energy pump, which moves atoms
from state E1 to state E3 and stimulates the release of energy from atoms
in state E3 so that the drop to state E1. It doesn’t have any effect on
atoms in state E2. The second column gives the effect of atoms in state
n2 on those in states in n1 and n3, and the second row the change in n2

as a result of the energy pump. Both of these need to be zero for the
pump to be behaving as advertised.

Exercise 1: Why does the first column of G contain only zeros? Why do
some γij have a minus sign and the others a plus sign?
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In the case of ruby lasers, the spontaneous emission rates are γ21 = 1/(3 ms)
and γ32 = γ31 = 1/(0.1 µs). Observe that γ21 < γ32, and, in fact, γ32 and

Note that the units of each
γij are 1/time! Why is this?
Look at the units of n′ and
n in (3) to see. The con-
version between the units of
the constants γij is: 1µs

= 10−3 ms, so γ−1
31 =

10−4ms.

γ31 are not just larger than γ21, but much much much larger! Physically, this
means is that atoms in energy level E3 decay almost immediately to E2 or E1,
and relative to this, atoms in level E2 decay slowly to E1. This discrepancy in
behavior between the energy levels is necessary for lasers to exist at all.

We are also implicitly as-
suming that the decay from
E3 to E2 is through expul-
sion of energy like heat or
a vibration instead of by re-
leasing a photon.

2.2. Stimulated emission and lasers. Finally, we need to introduce the pho-
tons that make the laser. (The word LASER is an acronym for “Light Ampli-
fication by Stimulated Emission of Radiation.”) When an atom changes from
a state E2 to E1 it releases energy, which may take the form of a photon. The
“Amplification” in the “LASER” begins when photons that are emitted by this
state change circulate through the lasing medium (the ruby), interact with an-
other atom of energy E2 and stimulate it to change to state E1 and emit another
photon of the same frequency. This is called “Lasing.” Note that lasing has the
effect of increasing the number of photons in the system, and decreasing the
number of atoms in energy level E2.

To model this, we rewrite the system (3) to account for this decrease, and
add an equation for the number of lasing photons in the system. Letting p(t)
be this number of photons, the equation for p turns out to be

p′ = p(−γc + K (n2 − n1)),

where K is a positive constant called the gain rate, which represents the increase
in lasing photons because of the photons’ interaction with atoms in state E2 to
stimulate release of more photons, and γc is the rate at which lasing photons
leave the system entirely (as laser light!). Note that this equation is in terms
of n2 − n1. We will call this the “population inversion function” in a moment.

To rewrite (3), note that because the atoms at energy level E3 decay much
faster than those at E2 we might get away with the assumption that n3(t) = 0.
If we take n3(t) = 0 and rewrite (3) in terms of the “population inversion
function” n(t) = n2(t) − n1(t), we can rewrite the system as a single equation
(you do this in Exercise 2).

Example 2: Let nT be the total number of atoms in the laser, so that
nT = n1 + n2 + n3. Derive expressions for n1 and n2 in terms of n and
nT , assuming that n3(t) = 0.
Because n3 = 0, we have nT = n1 + n2. By definition, n = n2 − n1. If we
add these two expressions, we get 2n2 = nT + n, so that n2 = 1

2 (nT + n).

If we subtract them, we get 2n1 = nT − n, so that n1 = 1
2 (nT − n).

Exercise 2: Rewrite system (3) as a single equation in n, by assuming that
n3 = 0 and subtracting the remaining equations to get an equation for
n′ = (n2 − n1)′. (You will need the results derived in Example 2.)

Finally, the lasing photons reduce the number of atoms in state E2, so we
have to add a term to the equation that you found in exercise 2, to get the
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nonlinear system

(4)
n′ = −(

1

2
Wp + γ21)n + (

1

2
Wp − γ21)nT − 2Knp

p′ = p(−γc + Kn)

It is convenient to rewrite (4) so that time is measured as a number of photon
decay periods, and so that the population inversion function and number of
lasing photons are measured as fractions of various equilibrium values. We omit

If you’re curious you can
see how this rewriting works
by taking n(t) = aN(T ),
p(t) = bP(T ), and t =
cT ; plugging in and picking
the right values for a, b and
c will give (5).

the details of how that is done; the resulting, simplified, system is that which
we introduced as our model at the beginning of the lab,

(5)
N ′ = γ(A− N(1 + P))

P ′ = P(N − 1).

We refer to the scaled variable N as the population inversion, and call P the
intensity function. The constants γ and A are combinations of the other con-

stants in the problem (it happens that γ =
1
2
Wp+γ21

γc
and A =

( 1
2
Wp−γ21)KnT

( 1
2
Wp+γ21)γc

).

We can think of A as a measure of how efficient the laser is (that is, how much
it intensity increases as the population inversion increases) and γ as a measure
of how lasing photons build up in the laser (that is, a ratio of photon creation
to photon release as laser light). We will assume that these are positive in all
lab exercises.

Exercise 3: Find the critical points of (5).

Exercise 4: The linearization of (5) at (1,A− 1) is

u′ = −γ(Au + v), v ′ = (A− 1)u.

(a) Rewrite this linear system as a single second order linear equation for v .
(b) What is the value of P when v = 0? How are P and v related?
(c) The function PRO(t) = v(t) + A− 1 is called the relaxation oscillation

(RO) of the laser. How is it related to P? Use your solution to part (a)
to write down a second order equation which has PRO as its solution.
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