
LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND
NUMERICAL METHODS, PART A

(c)2019 UM Math Dept
licensed under a Creative Commons
By-NC-SA 4.0 International License.

1. Introduction

Recall that before working each part of the lab you should read through it. Both
of Parts A and B have a first section that describes the MATLAB commands
that we will be using in the lab. Read through those quickly, so that you know
what they are, and remember to refer back to this section as you work the lab
for help with MATLAB.

Next, we give an overview of the model that we introduced in the Prelab,
The remainder of each part of the lab are the exercises that constitute the work
that you will need to complete the reflection at the end of lab. The actual
assignment you will complete then is given at the end of the Part B document.

Note that this lab is one of those for which you will submit a reflection at the
end of the lab. You will complete all of the work for this lab in pairs, with a
partner. At the end of the lab you will first think about the reflection questions
independently, and then work with your partner to develop a response to the
prompts given at the end of Part B of this lab.

2. Matlab

MATLAB commands we use in this lab include the following.

2.1. disp. Displays text to the command window. For example,
>> disp(’This is text sent to the command window’)

2.2. eulermethod s19. This isn’t a native MATLAB command; download it
from the labs page. The command eulermethod s19 approximates the so-
lution to a differential equation or system using Euler’s method. It takes as
arguments the same arguments as we use with ode451, plus a step size to use:

>> eulermethod s19(f handle, [tmin tmax], init cond, h);

for example,
>> eulermethod s19(@(t,x) [x(2); -x(1)], [0 10], [0;1], 0.1);

2.3. ode45. Finds a numerical approximation to a differential equation or sys-
tem of equations:

>> [tsol,xsol] = ode45(f handle, [tmin tmax], init cond);

For example,
>> [tsol,xsol] = ode45(@(t,x) [x(2); -x(1)], [0 10], [0;1]);

It is possible to set options that determine how ode45 behaves; for example,
we can set the maximum step size it is allowed to try by setting up an options

1Except that it doesn’t support the addition of options.

2 LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS, PART A

object and passing that to ode45:
>> options = odeset(’MaxStep’, 1);

>> [tsol,xsol] = ode45(@(t,x) [x(2); -x(1)], [0 10],...

[0;1], options);

(the elipses, ..., are just to break the line here), Of course, in most instances
this isn’t necessary.

2.4. ode15s. This is another numerical solver for differential equations, and
takes exactly the same arguments as ode45. It deals well with stiff systems,
for which solutions have regions that change very much faster than they do in
others.

2.5. plot. Plot one vector against another; e.g., to plot component plots from
the output from eulermethod s19 and ode45 in the examples above,

>> plot(tesol,xesol(:,1),’-k’, t45sol,x45sol(:,1),’--k’);

2.6. tic. This starts MATLAB’s internal timer, so that you can see how long a
command runs for; see toc

2.7. toc. This stops MATLAB’s internal timer, so that you can see how long a
command runs for. For example, to see how long a call to ode45 takes:

>> disp(’timing for ode45’);

>> tic

>> [t,x] = ode45(@(t,x) [1000*x(2); -1000*x(1)], [0 100],...

[-2;5]);

>> toc

(obviously, it makes sense to use tic and toc in a script, where the only thing
you are measuring is the time for the intervening commands, rather than how
long it takes you to type in commands).

3. Background

In this lab we consider a circuit model, which is a second-order, linear, constant-
coefficient differential equation. In the prelab we found this to be

(1) y ′′ + 2γy ′ + ω2
0y = F (t).

The characteristic polynomial of the associated homogeneous equation is λ2 +

2γλ + ω2
0, with roots λ = −γ ±

√
γ2 − ω2

0. Thus, if γ is a small (relative to

ω0) positive number, then the system is underdamped and the solution can be

written in the form yc(t) = Re−γt cos((
√
ω2

0 − γ2)t − φ0) for some R and φ0.

Previously we considered forcing functions F (t) of the form F (t) = A cos(ωt).
In this lab, we instead consider forcing functions, such as the step function
uc(t), which are discontinuous.

To solve an equation such as (1) numerically (e.g., with ode45), we rewrite
it as a system and the numerical method then uses known data (e.g., the initial
conditions and system of equations) to predict the values of the variables y
and y ′ at a later time. For Euler’s method, which is very simple (and not

LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS, PART A 3

very accurate), we approximate a solution to x ′ = f (t, x) (or, for a system,
x′ = f(t, x)) by

(2)
tk+1 = tk + h

x(tk+1) ≈ xk+1 = xk + hf (tk , xk).

Then xk+1 is an approximation of x(tk+1) for all k ≥ 0, and so x(tf) ≈ xn.
When f (t, x) changes very rapidly (e.g., discontinuously), an approximation
such as this may have difficulty resolving the solution accurately.

4. Reflection

For this lab you are not submitting a formal lab writeup. Instead, you will
submit a shorter “reflection” at the end of Part B of the lab. In this you will
be considering the four questions

a. Geometrically, how does Euler’s method generate an approximate solu-
tion to a differential equation? How is this approximation related to the
direction field for the differential equation?

b. Given that Euler’s method, and other numerical solvers, generate an
approximation for the solution to a differential equation by using pre-
vious approximate values and the differential equation, what issues do
numerical methods have with short impulse forcing?

c. How can we deal numerically with problems involving delta function
forces (δ(t))?

d. Why is it hard to cancel an existing signal in a real-world circuit?

As you work through the following you may wish to keep these questions in
mind.

5. Part A Exercises

Unless otherwise stated, let I (t) = 1
a (uc(t)− uc+a(t)). This function is defined

by the file Impulse.m; you will need to download that from the course website,
then define the impulse you want with

>> a = value ;

>> c = value ;

>> I = @(t) Impulse(t,c,a);

or, alternately, for a = 1 and c = .5,
>> I = @(t) Impulse(t, 0.5, 1);

Note that the I that this defines uses the values a and c have when I is defined
(or, which are specified in the arguments of the call to Impulse); if you want
to change those values, you will need to redefine I (t), or create a new function
handle I2 that uses the different values.

Note (or recall) that
we define the unit step
function uc (t) in [BB, §5.5]
as the function

uc (t) =

{
0, t < c

1, t ≥ c
.

Thus the impulse I (t)
is the function I (t) ={

1/a, c ≤ t < c + a

0, otherwise
.

For Euler’s method, download the file eulermethod s19.m. It is described
in the MATLAB section, above, and takes the same arguments as ode45 and
ode15s, plus a stepsize h.

4 LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS, PART A

Exercise 1. If a = c = 1, what will the graph if I (t) look like? Plot this impulse
using Impulse to confirm your expectation. How will the graph be different if
a = 0.5 and c = 1? If a = 1 and c = 0.5? Add both of these to your graph to
see.

Exercise 2. Let a = c = 1. Find numerical solutions to the initial value problem
y ′′ + y ′ + 36y = I (t), y(0) = y ′(0) = 0, on 0 ≤ t ≤ 3, using ode45, ode15s,
and eulermethod s19. (For the last, use h = 0.05.) Plot the solutions (it may
be easiest to do this on different graphs) so that you can see the steps that the
different methods are taking. How are these different (for ode45 and ode15s,
look carefully at the step sizes)? Be sure you can explain why you might see
the differences that you do.

Then plot the Euler’s method solution with the solution from ode15s. What
is the difference? Why?

Exercise 3. Next take c = 1.01 and a = 0.5. Find numerical solutions to the
initial value problem y ′′+ y ′+ 36y = I (t), y(0) = y ′(0) = 0 on 0 ≤ t ≤ 3 with
ode45 and ode15s. Then try c = 1.01 and a = 0.1. Explain what is going on
in the latter case.

Exercise 4. Continue using c = 1.01 and a = 0.1, and solve the problem you
considered in exercise 3. Add an options object (see the MATLAB section,
above) to your function calls to ode45 and ode15s, decreasing the maximum
step size. How small does the maximum step size have to be for the numerical
solutions to be valid?

After finding a maximum step size that works for both methods, add the
MATLAB command tic and toc before and after the calls to ode15s and
ode45. Which is faster?

References

[BB] Brannan, James R, and William E Boyce. Differential Equations: an Introduction to
Modern Methods And Applications. Third edition. Hoboken, NJ: Wiley, 2015.

