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1. Matlab

MATLAB commands we use in this lab include the following.

1.1. disp. Displays text to the command window. For example,
>> disp(’This is text sent to the command window’)

See tic and toc, below.

1.2. eulermethod s19. This isn’t a native MATLAB command; download it
from the labs page. This command approximates the solution to a differential
equation or system using Euler’s method. It takes as arguments the same
arguments as we use with ode451, plus a step size to use:

>> eulermethod s19(f handle, [tmin tmax ], init cond, h );

1.3. ode45. Finds a numerical approximation to a differential equation or sys-
tem of equations:

>> [tsol,xsol] = ode45(f handle, [tmin tmax ], init cond );

Note that we can also specify, instead of just the minimum and maximum t
values, a set of points at which we want to have the solution evaluated. This
doesn’t change the numerical calculation; it just means we know what times
our xsol vector will be evaluated at. For example, to ensure that the solution
was available at t = 0, t = 0.1, t = 0.2, etc., we could use

>> tsol = 0:.1:5;

>> [tsol,xsol] = ode45(@(t,x) [-x(2); x(1)], tsol, [0; 1]);

It is also possible to set options that determine how ode45 behaves; for example,
we can set the maximum step size it is allowed to try by setting up an options
object and passing that to ode45:

>> options = odeset(’MaxStep’, 1);

>> [tsol,xsol] = ode45(@(t,x) [x(2); -x(1)], [0 10],...

[0;1], options);

1.4. ode15s. This is another numerical solver for differential equations, and
takes exactly the same arguments as ode45. It deals well with stiff systems,
for which solutions have regions that change very much faster than they do in
others.

1.5. plot. Plot one vector against another; e.g.,
>> plot( tesol,xesol(:,1),’-k’, t45sol,x45sol(:,1),’--k’ );

1Except that it doesn’t support the addition of options.
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1.6. tic. This starts MATLAB’s internal timer, so that you can see how long a
command runs for; see toc

1.7. toc. This stops MATLAB’s internal timer, so that you can see how long a
command runs for. For example, to see how long a call to ode45 takes:

>> disp(’timing for ode45’);

>> tic

>> [t,x] = ode45(@(t,x) [1000*x(2); -1000*x(1)], [0 100],...

[-2;5]);

>> toc

2. Background

In this lab we consider a circuit model, which is a second-order, linear, constant-
coefficient differential equation. In the prelab we found this to be

(1) y ′′ + 2γy ′ + ω2
0y = F (t).

The characteristic polynomial of the associated homogeneous equation is λ2 +

2γλ+ω2
0, with roots λ = −γ±

√
γ2 − ω2

0. Thus, if γ is a small (relative to ω0)

positive number, the system is underdamped and the solution can be written in

the form yc(t) = Re−γt cos((
√
ω2

0 − γ2)t −φ0) for some R and φ0. In this lab,

we consider forcing functions which are discontinuous.
To solve an equation such as (1) numerically (e.g., with ode45), we rewrite

it as a system and the numerical method then uses known data (e.g., the initial
conditions and system of equations) to predict the values of the variables y and
y ′ at a later time. In Part A we considered Euler’s method to see how this works
(though it is sufficiently inaccurate that it wouldn’t be useful in any production
context).

3. Part B

In the following, we consider the equations y ′′+y ′+36y = F (t) and y ′′+36y =
F (t) for different discontinuous F (t), with the goals of investigating what the
differences are between the response y when F (t) is a short impulse and when
F (t) is a delta function, and of seeing what happens when we try to cancel out
a response by imposing an impulse.

Note (or recall) that we de-
fine the Dirac delta function
δ(t) in [BB, §5.7] to be the
limit as a → 0 of the func-
tion

δa(t) =

{
1
a , 0 ≤ t < a

0, else
.

That is, it is an instanta-
neous impulse of unit mag-
nitude. For mechanical
systems, it induces a unit
change in momentum; for
electrical systems it causes
a unit change in voltage or
magnetic flux depending on
what we’re modeling.

Unless otherwise stated, let I (t) = 1
a (uc(t) − uc+a). With the function

Impulse.m from the course page, you can define different impulses Ij(t) with
>> I1 = @(t) Impulse(t,c,a1);

>> I2 = @(t) Impulse(t,c,a2);

and so on (assuming that c, a1, and a2 are already defined, of course).

Exercise 1. Review your Part A work from Exercise 4. Suppose that we consider
the problem y ′′ + y ′ + 36y = δ(t − 1), y(0) = y ′(0) = 0, where δ(t) is the
Dirac delta function at t = 0. What will the response look like? Sketch (by
hand) what you think it will look like. Then solve the problem numerically with
ode15s using F (t) = Ij(t), where the Ij(t) are the impulses having c = 1 and



LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS, PART B 3

a = 0.5, a = 0.25, a = 0.05, and a = 0.01. Note how your result confirms (or
refutes!) your expectation. Also note that you may need an options setting
to get ode15s to correctly render the solution.

Exercise 2. Now suppose that we have a circuit in which there is an (existing)
undesired signal (current). This may have been started by some nonzero initial
condition, say y(0) = 0, y ′(0) = 1.

To make our analysis easier, let’s take γ = 0 in (1). Then an initial impulse at
the origin is equivalent to solving y ′′+ 36y = 0 with initial conditions y(0) = 0,
y ′(0) = 1. Solve this problem numerically with ode45, generating points cor-
responding to the time vector tsol=0:.01:8 (see the MATLAB section above
to specify the times at which to get solution values). Verify that you get the
solution you expect.

Note that the signal has a period; call this T (you should be able to figure
out what T is). Now suppose you want to zero out this signal by applying an
impulse at t = T . What is the magnitude of the impulse you should apply?
In what direction? Use ode15s to solve the equation y ′′ + 36y = −k I (t)
with zero initial conditions and I (t) being an impulse starting at c = T having
width a = 0.05. Pick k so that you will zero out the signal (think about what
the impulse does to the solution—in particular, how it is related to the initial
condition on y ′(T )). You will want to have this solution on the same points as
the solution you generated with ode45, above. Then plot this solution added
to the original signal. Does it behave as you expect? Try smaller and smaller
values of a to see if, as your −kI (t) converges to −kδ(t − T ), the cancellation
works.

Is it obvious that an im-
pulse at t = t0 is equiva-
lent to y(t0) = 0, y ′(t0) =
1? Solve the two prob-
lems, y ′′ + 36y = δ(t) with
y(0) = y ′(0) = 0 and y ′′+
36y = 0 with y(0) = 0 and
y ′(0) = 1 to see—we can
do this once we’ve covered
[BB, §5.7], but even before
that can use our work from
Exercise 1 to see how this is
the case! What’s the slope
of your solution at t = 1?
How is the solution you ob-
tained related to the solu-
tion of y ′′ + y ′ + 36y = 0,
y(1) = 0, y ′(1) = 1?

Exercise 3. Finally, let’s revisit Euler’s method and see what happens when we
try to solve this problem with that. Generate solutions to the problem

y ′′ + 36y = F (t), y(0) = 0, y ′(0) = 1

with ode15s and eulermethod s19, with F (t) chosen to be an impulse of
width a = 0.01 that comes close to canceling out the signal at t = one period.
Plot the results together to see how they differ. How well does the numerical
solutions with Euler’s method do this? Can you explain what you see?

4. Reflection

Your reflection should be completed by you and your partner collaboratively, and
should be about a page in length, including figures to illustrate your conclusions.
In your reflection you will answer the questions given below, by following the
steps:

(1) Take two minutes to think, on your own, about the answers to the
following questions:

a. Geometrically, how does Euler’s method generate an approximate
solution to a differential equation? How is this approximation re-
lated to the direction field for the differential equation?
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b. Given that Euler’s method, and other numerical solvers, generate
an approximation for the solution to a differential equation by using
previous approximate values and the differential equation, what
issues do numerical methods have with short impulse forcing?

c. How can we deal numerically with problems involving delta function
forces (δ(t))?

d. Why is it hard to cancel an existing signal in a real-world circuit?
(2) Next, discuss these four questions with your partner, and, if you wish,

the others at your table, by having each person of your group give
their answers and reasoning. Once everyone has commented, come to
a consensus as a group as to what the answers should be.

(3) With your partner, generate a reflection writeup that concisely answers
the questions above.
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