
LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND
NUMERICAL METHODS

(c)2019 UM Math Dept
licensed under a Creative Commons
By-NC-SA 4.0 International License.

1. Objectives and Instructions

1.1. Model. In this lab, we will study differential equations of the form

(1) y ′′ + 2γy ′ + ω2
0y = F (t)

where F (t) is a discontinuous forcing function. We first encounter equations
of this type with continuous F (t) in Chapter 4 of Brannan & Boyce, when we
consider applications to mechanical systems. In this lab, we see how they are
related to electrical signals and filters.

Recall that the characteristic polynomial of the associated homogeneous

equation is λ2 + 2γλ + ω2
0, with roots λ = −γ ±

√
γ2 − ω2

0. If γ is a small

(relative to ω0) positive number, then the system is underdamped and the so-

lution can be written in the form yc(t) = Re−γt cos((
√
ω2

0 − γ2)t − φ0) for

some R and φ0. We specifically considered forcing functions F (t) of the form
F (t) = A cos(ωt). In this lab, we will instead consider forcing functions, such
as the step function uc(t), which are discontinuous.

What’s uc (t)? It’s just a
function that is zero until
t = c and one afterwards:

uc (t) =

{
0, t < c

1, t ≥ c
. We

will work with it in [BB,
§§5.5–6], but for now this
definition is what you need
to know.

1.2. Objectives. Throughout this semester we have used MATLAB’s ode45

function to generate numerical approximations to solutions of differential equa-
tions. Our first goal in this lab is to get a sense of how numerical solvers like
this work, the types of errors that may occur, and how they may be addressed.
In particular, we will

• see how numerical methods such as MATLAB’s ode45 work, by con-
sidering a much simpler method, Euler’s method, for generating an
approximate solution to a differential equation;
• explore how the manner in which these numerical approximations are

generated may result in instances where the approximate solution is
unreliable; and
• see how Laplace transforms may allow us to deal reliably with some of

these cases involving discontinuous or impulsive forcing functions in the
differential equation.

2. Pre-Lab

Laplace transform methods are particularly useful when there is a discontinuous
function in our differential equation. In the real-world, of course, there are
relatively few instances in which we see truly discontinuous functions. One
application where it is particularly reasonable to consider such functions is in

2 LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS

circuits with an applied voltage; in these it is possible to have very sudden
changes in imposed voltages. Motivated by this, we consider a circuit model in
this lab, to see how numerical methods work in this context.

2.1. RLC Circuits. In [BB, p.213], (1) is derived from Kirchhoff’s voltage law:
the forcing voltage e(t) in a closed circuit is equal to the sum of the voltages
across the elements in the circuit. For a circuit with a resistor with resistance
R, capacitor with capacitance C , and inductor with inductance L, this leads
to an equation for the current i in the circuit and charge q on the capacitor,
L di
dt + Ri + 1

C q = e(t). We can rewrite this by noting that i = dq
dt , so that

Lq′′+Rq′+ 1
C q = e(t). Dividing through by L and letting y = q, γ = R/(2L),

ω2
0 = 1/(LC) and F (t) = e(t)/L, we obtain (1).

Note that we could similarly
obtain a second order equa-
tion for i : if we differenti-
ate the equation L di

dt +Ri +
1
C q = e(t) and use the fact
that dq/dt = i , we get
an equation for i . Will it
have the same characteris-
tic equation?

Exercise 1: Rewrite the system L di
dt + Ri + 1

C q = e(t), dq
dt = i as a matrix

equation in the vector x =

(
q
i

)
. Show that the eigenvalues of the system

match those given for (1) in the introduction of the model at the beginning
of the lab.

If we think of a circuit such as this as a signal1 processor, we are thinking of
the input voltage e(t) as the input signal, and the voltage across the capacitor,
q/C , as the processed output signal. The amplitude of the output q depends
on the values of R, L and C we pick, and by picking those the output may have
a form that we specifically want. Conversely, if we don’t know R, L and C , we
may be able to determine something about them by picking an input e(t) and
seeing what the output q is.

2.2. Numerical Solvers. Throughout this semester, we have relied on MAT-

LAB’s ode45 function to plot (approximate) solutions to differential equations
and systems of differential equations. To do this, ode45 uses a method to
approximate points on a solution trajectory by using known information about
the preceding points and the differential equation. To illustrate this idea we
will consider a much simpler (and far less accurate) numerical method, Euler’s
method. Euler’s method is easy to visualize and implement, so we will briefly
describe it to get a sense of what numerical solvers do.

2.2.1. Euler’s Method. We illustrate Euler’s method first with a specific exam-
ple, and then state it more generally. Suppose that we are solving x ′ = t cos(x),
with x(0) = 0, for 0 ≤ t ≤ 1 (more generally, this is x ′ = f (t, x), with
x(t0) = x0, on [t0, tf]). We will approximate the solution to this initial value
problem on the interval by taking n = 2 steps to get from t0 = 0 to tf = 1.
That is, we start with t = 0, where we know x(0) = 0 and x ′ = t cos(x): thus,

Of course, for any real ap-
plication, we would use far
more steps than n = 2!

at (0, 0), x ′ = 0 · cos(0) = 0 · 1 = 0. We use this to predict what x will be a
short distance h = tf−t0

n = 1
2 from the initial condition. Euler’s method uses a

1For example, a radio signal sent to an electronic device will be received by an antenna,
and then translated into a voltage in the circuit.

LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS 3

tangent line approximation, and estimates that x(1
2) ≈ x1 = x0 + hf (t0, x0) =

0 + 1
2 (0) = 0. Thus, we approximate x(1

2) with x1 = 0. We then repeat

the process, using x1 at the time t1 = 1
2 and the differential equation to find

x2 = x1 + hf (t1, x1) = 0 + 1
2 (1

2 cos(0)) = 1
4 . Thus, Euler’s method has given

us an approximation for two points on the solution curve: (t1, x1) = (1
2 , 0) and

(t2, x2) = (1, 1
4). Formally, Euler’s method is an algorithm for generating each

of the approximate values xk at the t-values tk : it takes (for 0 ≤ k ≤ n)

(2)
h = tf−t0

n
tk+1 = tk + h

x(tk+1) ≈ xk+1 = xk + hf (tk , xk).

Then xk+1 is an approximation of x(tk+1) (0 ≤ k ≤ n), and so x(tf) ≈ xn.
If we’re solving a system of equations we can do the same thing as in (2),

but our dependent variable is a vector: we’re approximating the vector xk at
each step.

Example 1: Find the Euler’s method approximations x1 and x2 if x′ =(
0 1
−1 −2

)
x, x(0) =

(
1
0

)
and h = 0.2.

Solution: Let x =

(
x
y

)
. Then the differential equation gives x ′ =

f (t, x , y) = y and y ′ = g(t, x , y) = −x − 2y . At t0 = 0 we have
x0 = 1, y0 = 0. Then at t1 = t0 + h = 0.2, we approximate

x1 = x0 + h f (t0, x0, y0) = 1 + 0.2(0) = 1

and

y1 = y0 + h g(t0, x0, y0) = 0 + 0.2(−1) = −0.2.

Thus, we have so far generated the following approximation (the dashed
and dotted curves are the exact solution to this problem; the first point
and square are x0 = 1 and y0 = 0, and the second point and square our
approximations x1 and y1).

1 2 3
t

-0.25

0.25

0.5

0.75

1.

x,y

Then, at t2 = t1 + h = 0.4,

x2 = x1 + h f (t1, x1, y1) = 1 + 0.2(−0.2) = 0.96,

and

y2 = y1 + h g(t1, x1, y1) = −0.2 + 0.2(−1 + 0.4) = −0.32.

4 LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS

Thus x1 =

(
x1

y1

)
=

(
1
−0.2

)
, and x2 =

(
x2

y2

)
=

(
0.96
−0.32

)
. Adding these

values to our graph, we have the figure below.

1 2 3
t

-0.25

0.25

0.5

0.75

1.

x,y

Exercise 2: Suppose x ′ = 2
√
x . Let t0 = 1 and x0 = 1. The exact solution

to this initial value problem is x(t) = t2.

(1) Calculate x1 with h = 1, 0.1, 0.01, and 0.001. How does |x(t1) − x1|
change with h?

(2) Approximate x(2) using Euler’s method with h = 1/2. Calculate |x(1.5)−
x1| and |x(2)− x2|.

Exercise 3: Suppose we are considering the system x ′ = x − xy , y ′ =
−y +xy , x(0) = 2, y(0) = 1. Approximate x1, y1, x2, and y2 with Euler’s
method and a step size of h = 0.25.

2.2.2. Step Size. Fixing a uniform step size may not be the most effective way
to implement a numerical method. Instead, we can modify the algorithm by
taking any sequence t0 < t1 < t2 < · · · , where t1 − t0 does not have to be the
same as t2 − t1, and so on. For Euler’s method, we modify (2) to approximate
x(tn+1) by

xn+1 = xn + f (tn, xn)(tn+1 − tn).

Notice that this is just relaxing our initial use of a constant step size h = tf−t0
n !

In particular, we can make our algorithm more efficient by increasing h when the
error is small, and decreasing h when the error exceeds some chosen tolerance
level.

How would we know if this were the case? Ideally we would compare the
approximate solution for x with the actual value—except that if we knew the
actual value, we wouldn’t in general be using a numerical solver. To get around
this, most solvers at each step make a second calculation with a smaller step size
and see if the difference between the two is small. If the difference between the
two calculated values is small enough, the solver will continue with the existing
(or a larger) step size, and if it is too big it decreases the step size. This is why
a solver like ode45 gives its approximation to a solution xsol at a set of points
tsol that may not be evenly spaced.

Example 2: Approximate the solution to x ′ = 4 − t x3, x(0) = 1 using
ode45 to see how the step size varies.
Solution: In MATLAB, we have

LAB 4: DISCONTINUOUS FORCING, SIGNALS, AND NUMERICAL METHODS 5

>> [ts, xs] = ode45(@(t,x) 4 - t*x^3, [0 5], 1);

>> plot(ts, xs, ’.k’, ’MarkerSize’, 10);

References

[BB] Brannan, James R, and William E Boyce. Differential Equations: an Introduction to
Modern Methods And Applications. Third edition. Hoboken, NJ: Wiley, 2015.

