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1. MATLAB

MATLAB commands we use in this lab include the following.

1.1. oded5. Finds a numerical approximation to a differential equation or sys-
tem of equations:
>> [tsol,xsol] = oded45(f_handle, [tmin tmaz], init_cond);
We can set options that change the behavior of ode45 with odeset; e.g., to
set the maximum allowed error to 1 x 1078, we define an options object with:
>> options = odeset( ’RelTol’, 1e-8 );
and then include this as an argument to ode45:
>> [tsol, xsol] = ode45(..., options);

1.2. plot. Plot one vector against another; e.g.,
>> plot( tsol, xsol(:,1) );

1.3. plot3. Plot a three-dimensional figure; input are a vector of x-values, a
vector of y-values, and a vector of z-values. Successive (x,y, z) triples from
these vectors are graphed in 3-space:

>> plot3( xvec, yvec, zvec );
e.g., given the ode45 command above, we can plot the trajectory for a system
of three equations in the three-dimensional phase space with

>> plot3( xsol(:,1), xsol(:,2), xsol(:,3) );
if x0 is the initial condition used in the solution, we could add that by using
plot3 to plot the point:

>> hold on;

>> plot3( [x0(1)], [x0(2)], [x0(3)], ’.’, ’MarkerSize’, 20 );
We rotate graphics using the rotate-tool button (® ) on the tool bar: clicking
that will allow clicking and dragging the graph to rotate the image. If we have
a desired azimuth and elevation, we can set these explicitly with

>> view([120,20]);

1.4. PlotComet_3D. This is not a native MATLAB command; it is an add-on
command available from MathWorks, the makers of MATLAB. Download it from
the course web page. It plots an animated 3D plot of the trajectory specified
by three vectors of x, y, and z values. For example, given the solution xsol,
above, we could plot the trajectory (with a “comet” tail) with
>> PlotComet_3D( xsol(:,1), xsol(:,2), xsol(:,3) );

There are two options for PlotComet_3D that are very useful; Frequency dic-
tates the speed with which the plot advances, and blockSize determines the
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length of the tail. Thus, we could speed up the display and pick a tail length
with
>> PlotComet_3D( xsol(:,1), xsol(:,2), xsol(:,3),...
’Frequency’, 100, ’blockSize’, 100 );

2. BACKGROUND

In this lab we consider the Lorenz equations,

X' = o(-x+y)
(1) y = rx—y—xz
Z = —bz+xy,

a three-dimensional system with applications to weather modeling. We saw
in the Prelab and Part A of the lab that possible critical points are (0,0, 0)

and Py = (£n,4+n,r — 1) (where n = /b(r —1) = w/%(r— 1)). We can
linearize (1) about these critical points to determine the qualitative behavior of
the system.

At the end of Part A, we saw that when r is sufficiently large (in fact,
when r > roo = 24.73684211) all three of the critical points are unstable,
which suggests that the variables in the system either diverge (go to o) or are
constrained by some sort of nonlinear feedback. We saw the latter behavior with
the van der Pol equation in lab 2, when the critical point became unstable and
a limit cycle—closed periodic trajectory in the phase plane—became stable.

For the Lorenz equations, it turns out that there is a similar behavior: tra-
jectories constrained to an attractor (like the limit cycle in the van der Pol
equation) are possible. In this case, however, we can see a “period doubling
bifurcation” in which periodic solutions see their periods double as a parameter
(r) is changed (decreased), and chaotic behavior is possible. We do not have
the time to define or explore chaos here, but a reasonable summary is that tra-
jectories are unpredictable but constrained to a specific region of phase space.
In any case, the key points we want to remember are that (1) the system's
behavior near critical points is well-approximated by the linearizations of the
system, and (2) the nonlinear system may have significantly different behavior
away from the critical points.

3. PART B

Before starting on these exercises, review your work from Part A. In particular,
make sure that you understand what you expect trajectories in the phase space
to do if r < 1 (Exercise 1), 1 < r < 1.3 (Exercise 2), and 1.3 < r < 24
(Exercise 3). When r > 24.7368, what happens to the stability of the critical
points?

Exercise 1. Look at a value of r a bit bigger than r = 25 (e.g., r = 28).
Numerically solve (1) with ode45 and plot the component x as a function of
t, as well as the trajectory in the phase space. Be sure you can find where the
critical points are in both graphs. Does the trajectory diverge to infinity? The



LAB 5: THE LORENZ SYSTEM AND WEATHER PATTERNS, PART B 3

set of points that the trajectory is able to reach in the phase space is called a
strange attractor—it is a non-periodic, unpredictable, attracting solution.
Whenever we see trajectories with a great deal of variation, like this, we should

be cautious about trusting the numerical result we obtain to be quantitatively
accurate. Try setting the required tolerance for the ode45 solver to a much
higher value, e.g., with

>> options = odeset( ’RelTol’, 1e-8 );
(to require a relative error less than or equal to 10~8), and then solve the system
again:

>> [tla, xlal = ode45(..., options);
Is the result different? What does this suggest about your ability to predict
values of the state variables for large times?

Exercise 2. To get a sense of what the trajectory in Exercise 1 is actually doing,
it's useful to plot it in phase space as a parametric curve parameterized by time.
The PlotComet_3D command will do this for you. Try running it to see what is
happening to the trajectory. You will probably want to play with the Frequency
and blockSize options to get a graph that gives a sense of what is happening.

Exercise 3. Finally, let's look at the behavior for some other values of r. Con-
sider r = 170. Generate a phase space trajectory for this case. Is it significantly
different from the behavior you saw in Exercises 1 and 2? (To check this, you
may need to look for large enough times that any transient has vanished.)

Then, what happens if you consider a smaller value of r (say, r = 160)? Try
decreasing r below r = 150—what happens to the trajectories in this case?
You should see the number of loops in the limiting trajectory suddenly become
finite. Continue decreasing r, considering between r = 149 and r = 147; what
happens to the number of loops in the limiting trajectory? If we think about r
decreasing rather than increasing, we call this a period doubling cascade; make
sure that this description makes sense. What happens when you get to a still
smaller value of r (e.g., r = 145)7

4. LAB REPORT

Review the background description of the Lorenz system as a model of the
motion of fluid between two layers, especially in the Prelab and Part A. Note
that the functions x(t), y(t), and z(t) don't model the motion of individual
particles. Instead, they describe the intensity of the motion of the particles
in the fluid (x), the temperature difference between ascending and descending
particles (y), and distortion from vertical motion of the particles (z). Then
consider the lab report as described below.

Next, we posit that you have had the revelation that the unifying theme
in your varied lab writing career is your overwhelming love of mathematical
modeling, and so have founded a consulting firm specializing in modeling and
the analysis of mathematical models. A popular science reporter has contacted
you to consider the impact of climate change, which has the effect of increasing

There are a number of pa-
rameter ranges in which the
Lorenz system goes through
a period doubling cascade.
It isn't obvious where these
will occur, nor when the be-
havior will converge to a
limit cycle instead of be-
ing chaotic—this is one of
the things that makes non-
linear systems very interest-
ing! Note that the Lorenz
system (1) doesn't even
look particularly messy—
the nonlinearity is “just”
quadratic. Yet its behav-
ior can be very unintuitive.
It was proposed as a simple
meteorological model, but
any “real” model is much
more complicated. One
might reasonably guess that
one of the ramifications of
that added complexity will
be an increased difficulty in
accurate long-term analy-
sis.
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the temperature at the Earth’s surface, on weather forecasting. You are writing
a report in response to her request using a simple model (the Lorenz system)
that captures some of the behavior of the atmosphere while avoiding the need
to explain a far more complex model.

In your report you will want to address the questions

e How your linear analysis of the system at the different critical points

allows you to predict its behavior when r < 24.7368 ..., and how this is
different when r > 24.7368 ...

e How the case r > 24.7368 ... exhibits sensivity to initial conditions. Use

your work from Part B, Exercise 1 to demonstrate on this, and reflect
on what it means for weather forecasting.

e What we mean by chaotic behavior and how the Lorenz system exhibits

this, along with the implications of this for weather forecasting.

Your lab report should have the following format:

Introduction: Summarize the purpose and contents of your report.
You should include the system (1), briefly noting its relation to weather
systems, but otherwise should keep technical notation to a minimum.

. Body: In the body of the report, you should address the points noted

above. You will want to include relevant equations, calculations, and
graphs. Note that in doing this you should explain how your work in
math 216 allows you to analyze this system. In your discussion you
should also highlight the bifurcations that occur in the Lorenz model,
how the behavior of solutions may change as a parameter (r) changes,
and how the behavior for larger values of r may speak to our ability
long-term weather forecasting.

Conclusion: Provide a short, several paragraph, summary of your re-
sults that ties together the work you have described in the body.
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