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1. Objectives and Instructions

1.1. Model. The Lorenz equations

(1)
x ′ = σ(−x + y)
y ′ = r x − y − xz
z ′ = −b z + xy

are a nonlinear three-dimensional system which models the motion of a layer
of fluid when the temperatures at the top and bottom boundaries of the layer
differ. In this system, x measures the intensity of the motion of the particles
in the fluid, y measures the temperature difference between ascending and de-
scending particles, and z is a measure of the distortion from vertical in particles’
motion. Gases are considered fluids in this context, so this system has appli-
cations to meteorological problems in which the “fluid” is taken to be Earth’s
atmosphere. The coefficients σ, b, and r are all positive, and represent different
characteristics of the system: in particular, r is proportional to the difference in
temperature between the boundaries of the layer. (The other parameters, σ and
b, depend on the gas and geometry of the layer.) In this lab, we will study how
the behaviors of solution trajectories for the Lorenz equations change as we vary
r . As we do this we will see that the system undergoes several bifurcations,1 and
may exhibit interesting nonlinear behavior including chaos and period doubling.2

1.2. Objectives. Our goals in this lab are to see how we can linearize nonlinear
systems such as (1), and to see some of the interesting nonlinear behaviors that
may arise in such systems. In particular, we want to explore

• how Jacobians may be used to linearize nonlinear systems at a critical
point,
• how the behavior of the linear system near critical points can help us

understand the behavior of the nonlinear system,

1What is a bifurcation? Bifurcations can occur in systems that have a parameter—e.g.,
r—that determines the critical points. We say there is a bifurcation at a value of the parameter
where the number of critical points changes (e.g., if a critical point is at x =

√
r , then as r

goes from negative to positive values we go from zero to one critical point). We call those
parameter values (e.g., r = 0) bifurcation points. One more thing: sometimes we’ll say there
is a bifurcation occurs when the number of critical points stays the same, but their stability
changes.

2We do not formally define chaotic behavior here, but a reasonable summary is that chaotic
trajectories are unpredictable (we can’t predict where they will be in phase space at any given
time) but are constrained to a specific region of phase space. Period doubling occurs when
periodic solutions see their periods double as a parameter (here, r) changes.
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• and see how system (1) can display chaotic behavior, with solutions
that diverge unpredictably from initial conditions, and period doubling.

2. Pre-Lab

Earlier in the course, we saw how we can linearize nonlinear equations us-
ing Taylor series, and addressed linearization of nonlinear systems at critical
points other than the origin by changing coordinates and then discarding small
nonlinear terms. In the following we develop a more systematic approach to
this process. Let x0 = (x0, y0) be an isolated critical point of the autonomous
system

Here, by “isolated,” we
mean what you think: there
isn’t another critical point
in some circular region
around the critical point.
We look at this (again!) in
§7.2, and will see there an-
other explanation for why
the Jacobian provides the
coefficient matrix for the
linearized system.

(2)
x ′ = f (x , y)
y ′ = g(x , y).

(Note that (1) is of this form—with three variables.) In matrix form, we write

x′ = f(x), where x =

(
x
y

)
and f(x) =

(
f (x , y)
g(x , y)

)
. The functions f (x , y)

and g(x , y) have two independent variables x and y , and we can take partial
derivatives of f or g with respect to either one.

Partial derivatives show up
in multivariable calculus! If
you have already taken such
a course, this may look
easy; if you haven’t, it’s
easy to see how it works.

Example 1: Let f (x , y) = x + y 2 + x2exy . Find the partial derivatives of f
with respect to x and y.
Solution: The partial derivative of f with respect to x is calculated by
taking the derivative of f using x as the variable, and treating y as a
constant:

∂f

∂x
= 1 + 2xexy + x2yexy .

Likewise the partial derivative with respect to y is calculated by treating
x as a constant:

∂f

∂y
= 2y + x3exy .

We use the notation fx = ∂f
∂x and fy = ∂f

∂y to more concisely denote the

partial derivatives.

The Jacobian of (2) at the critical point x0 is the matrix

J(x0) =
(

fx (x0) fy (x0)
gx (x0) gy (x0)

)
.

We use the Jacobian to give a linear approximation to a vector function f(x),
where x = (x(t), y(t)), near x0 = (x0, y0):

(3) f(x) = f(x0) + J(x0)(x− x0) + e(x).

Here we have defined e(x) = f(x)− J(x0)(x− x0).3 Next, if f is the right-hand
side of (2) and x0 is a critical point we know f(x0) must be zero, and we get

(4) f(x) = J(x0)(x− x0) + e(x).

Note that thes expression in
(3) looks very much like a
the linear approximation for
a function of one variable:
f (x) ≈ f (x0) + f ′(x0)(x −
x0)!

3So, it is the error in the linear approximation.
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If we assume that e(x) is small, we have the linear approximation of f(x).

Let’s do this for (2): if the critical point x0 =

(
x0

y0

)
, take u = x − x0 and

v = y − y0. Then x′ =

(
u′

v ′

)
, and f(x) = J(x0)

(
u
v

)
+ e(x). Thus, if e(x) is

small enough that we may ignore it, we obtain the linearization of (2) at the
critical point x0,(

u′

v ′

)
=

(
fx(x0, y0) fy (x0, y0)
gx(x0, y0) gy (x0, y0)

)(
u
v

)
=

(
fx(x0, y0) · u + fy (x0, y0) · v
gx(x0, y0) · u + gy (x0, y0) · v

)
,

or, in matrix form, u′ = J(x0)u, where u =

(
u
v

)
.

Exercise 1: Recall the van der Pol system

x ′ = y
y ′ = −x + µ(1− x2)y

from Lab 2 has a single critical point at (0, 0). For this system, we have
f (x , y) = y and g(x , y) = −x + µ(1− x2)y . Find the Jacobian and use
it to show that the linearization of the system near (0, 0) is(

x ′

y ′

)
=

(
0 1
−1 µ

)(
x
y

)
,

as we found in Lab 2.

Analogously, we can define the Jacobian for 3× 3 systems. Given the system

x ′ = f (x , y , z)
y ′ = g(x , y , z)
z ′ = h(x , y , z),

the Jacobian is J =

(
fx fy fz
gx gy gz
hx hy hz

)
, and the linearization at (x0, y0, z0) isu′

v ′

w ′

 = J(x0, y0, z0)

u
v
w

 ,

or u′ = J(x0)u. Note how this illustrates the power of our matrix notation. We
can generalize from two to three (or more!) dimensions completely transpar-
ently!

2.1. The Lorenz System. In meteorological applications of the Lorenz system
(1), the constants σ = 10 and b = 8/3 are fixed, but the parameter r can
vary, as it is proportional to the temperature differences at the boundaries of
the fluid layer. We want to understand how and when changes in the behavior
of solutions to the system occur with changes in r .

Your J(0, 0, 0) in Exer-
cise 2 should look likea b 0

c d 0
0 0 e

. The char-

acteristic polynomial for
such a matrix is

(e − λ)
∣∣∣ a−λ b

c d−λ

∣∣∣.



4 LAB 5: THE LORENZ SYSTEM AND WEATHER PATTERNS

Exercise 2: Write down the Jacobian for (1) and evaluate it at the critical
point (x0, y0, z0) = (0, 0, 0). Calculate its eigenvalues (remember we
consider only r > 0) and determine how the stability of the origin changes
with r . (You do not need to determine the type of the critical point, only
its stability for r in various intervals.)

2.2. Bifurcations. A common theme in our labs has been the question of how
solutions to differential equations change as we vary some parameter in the
model. The value of the parameter at which the solutions change dramatically
is called a bifurcation point. For example, critical points (and other attracting
sets, such as limit cycles) may appear or disappear, and the stability of the
critical points (and other attracting sets) may change.

Example 2: We have seen several types of behaviors that can occur as some
parameter in our differential equation (or system) passes a bifurcation
point.

(1) In Exercises 2.5.10–2.5.12 in [BB] we see examples of saddle-node,
pitchfork, and transcritical bifurcations. Find the critical points for
each, noting how the number and stability of critical points changes at
the bifurcation points.

(2) Review Lab 2 to see how the stability of the origin as a critical point
changes as we vary µ in the van der Pol equation. In this case a
bifurcation diagram would be three-dimensional, so we don’t try to draw
it. Instead, indicate how the stability of the critical point (the origin)
changes as µ changes. What other change occurs in the system? This
bifurcation is called a (supercritical) Hopf bifurcation.

Solution:

(1) For Exercise 2.5.10, we consider the differential equation x ′ =
f (x) = r − x2. Critical points are when x ′ = 0 = r − x2. Thus
if r < 0 there are no critical points, if r = 0 there is the unique
critical point x = 0, and if r > 0 there are the two critical points
x = ±

√
r . Thus as r goes from negative values to positive ones,

we see a transition from no solutions to one solution to two. Note
that f ′(x) = −2x , so x = 0 is semistable, x =

√
r is stable,4 and

x = −
√

r is unstable.
For Exercise 2.5.11, we consider the equation x ′ = f (x) = x(r −
x2). Here x = 0 is always a solution, and for r > 0 we have also
the critical points x = ±

√
r . Noting that f ′(x) = r −3x2, if x = 0

and r < 0, we have f ′ < 0 and the critical point is stable. If r > 0,
we see similarly that f ′(±

√
r) < 0 and f ′(0) > 0, so that x = 0 is

unstable and x = ±
√

r are stable.

4Recall that in §1.2 of [BB] we saw that the linearization of y ′ = f (y) tells us that if for a
critical point y0 we see f ′(y0) < 0, the critical point is asymptotically stable, with the expected
extension to the cases f ′(y0) > 0 or f ′(y0) = 0.
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For Exercise 2.5.12, we consider x ′ = f (x) = x(r−x), and solutions
are x = 0 and x = r . Then f ′(x) = r − 2x , and if r < 0 we see
that the point x = 0 is stable and x = r unstable; and for r > 0,
the opposite is true.

(2) In Lab 2, we saw that the critical point of the van der Pol system
(see Exercise 2) is (0, 0), and that the eigenvalues of the linearized
system are λ = µ ± i , which have negative real part when µ < 0
and positive real part when µ > 0. Therefore, the critical point is
stable when µ < 0 and unstable when µ > 0. When µ > 0, we
saw that trajectories spiral away from the origin, but are bounded
by a periodic trajectory. This is a limit cycle (we do not prove this
here, but it can be shown that the limiting trajectory is a periodic
solution to the nonlinear equation). Thus as µ passes from negative
to positive values, the origin becomes unstable, but a new type of
attracting set (the limit cycle) appears.

Exercise 3: For the Lorenz system (1), find all critical points in terms of the
parameter r . For what values of r is there a single (real) critical point?
More than one? What is the bifurcation point (that is, the value of r
where the number of critical points changes)?

Exercise 4: Let P+ = (η, η, r − 1), where η =
√

8
3 (r − 1). Find the Jaco-

bian J(P+). The characteristic polynomial of this is p(λ) = det(J(P+)−
λI) = −λ3 − 41

3 λ
2 − 8

3 (r + 10)λ + 160
3 (1 − r). Graph the characteristic

polynomial for four choices of r : one in the interval (1, 1.34562), one
with r = 1.34562, one in the interval (1.34562, 24.7368), and one with
r > 24.7368. Use your graphs to determine the type and stability of the
critical point in the first three cases. Is it obvious what is happening when
r > 24.7368? (The values r = 1.34562 and r = 24.7368 are those where
significant changes in the behavior of the system occur.) Describe what
properties of the critical point you can see changing as r crosses these
values.
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