
Vol:.(1234567890)

Int. J. Res. Undergrad. Math. Ed. (2024) 10:284–317
https://doi.org/10.1007/s40753-022-00200-0

1 3

Lessons Learned About Incorporating High‑Leverage 
Teaching Practices in the Undergraduate Proof Classroom 
to Promote Authentic and Equitable Participation

Kathleen Melhuish1  · Paul C. Dawkins1 · Kristen Lew1 · Sharon K. Strickland1

Accepted: 30 September 2022 / Published online: 4 November 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
In recent years, professional organizations in the United States have suggested 
undergraduate mathematics shift away from pure lecture format. Transitioning to 
a student-centered class is a complex instructional undertaking especially in the 
proof-based context. In this paper, we share lessons learned from a design-based 
research project centering instructional elements as objects of design. We focus on 
how three high leverage teaching practices (HLTP; established in the K-12 litera-
ture) can be adapted to the proof context to promote student engagement in authentic 
proof activity with attention to issues of access and equity of participation. In gen-
eral, we found that HLTPs translated well to the proof setting, but required increased 
attention to navigating between formal and informal mathematics, developing pre-
cision around mathematical objects, supporting competencies beyond formal proof 
construction, and structuring group work. We position this paper as complementary 
to existing research on instructional innovation by focusing not on task trajectories, 
but on concrete teaching practices that can support successful adaption of student-
centered approaches.

Introduction

In the United States, there has been a substantial push for undergraduate mathematics to 
move away from a traditional lecture model (Abell et al., 2018; Saxe & Braddy, 2015). 
To support these efforts, there are a number of research-based curricula designed to 
center student thinking (e.g., Larsen et al., 2013); however, there remain a number of 
open questions related to instructional implementation strategies and the nuances of 
the proof setting. Moreover, recent results suggest that inquiry-oriented curricula can 
inadvertently produce inequitable outcomes (Johnson et  al., 2020). Researchers have 
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conjectured that these inequities may result from a number of sources including inequi-
table participation where certain students may take on more substantial roles in mathe-
matical activity. Such conjectures align with well-documented status issues that emerge 
in group work in K-12 mathematical settings (e.g., Esmonde, 2009) and preliminary 
work in the proof-based setting (e.g., Brown, 2018).

Much of the design-based research work at the advanced undergraduate level 
relies on content-driven rather than participation-driven design heuristics. By this 
we mean the overarching objective is for students to reinvent concepts, theorems, 
and algorithms (e.g., Larsen, 2013; Rasmussen & Kwon, 2007; Wawro et al., 2012). 
However, disciplinary practices often undergird the reinvention processes (such as 
in the analysis of Larsen & Zandieh, 2008; Rasmussen et al., 2015). In our design 
project, we fore fronted participation in disciplinary practices as the primary student 
activity goal. In particular, we aimed to engage students in disciplinary practices 
that support constructing, validating, and comprehending proofs (and theorems) 
which we refer to as authentic mathematical proof activity (AMPA). To accomplish 
this work, we adhered to two participation related heuristics:

• (Access) Providing access to opportunities to participate in authentic mathemat-
ical proof activity.

• (Engagement) Promoting participatory equity in authentic mathematical proof 
activity engagement.

By access to opportunities, we mean both that students are provided tasks and 
prompts that may engender AMPA and attention to whether they have the appropri-
ate tools and resources to engage in robust ways. By participatory equity, we mean 
whether students, regardless of background and status, are engaging in disciplinary 
activity in meaningful ways.

In order to support students in this activity, we identified and adapted a set of 
high leverage teaching practices (HLTP) studied in K-12 classrooms to the advanced 
proof-based setting (undergraduate classes where formal proofs are one of the pri-
mary objects of study). These practices are “routine aspects of teaching, which guide 
teachers to integrate students’ thinking, content knowledge, and equity” (Woods & 
Wilhelm, 2020, p. 106). Many such practices are identified in the elementary and 
secondary mathematics teaching literature (Hlas & Hlas, 2012) with studies that 
illustrate how such practices can unfold in a classroom (e.g., Herbel-Eisenmann, 
2002; Staples, 2007; Stein et al., 2008) and studies connecting the use of such prac-
tices to more equitable learning environments (e.g., Boaler & Staples, 2008).1We 
selected three teaching practices to center this contribution. These practices corre-
spond to three components of lessons that are common to more student-centered 
instruction: launching tasks, managing group work, and students publicly sharing 
ideas in whole class discussion. We note that these are not the only HLTPs that 
could be designed, but we found these three to be particularly useful for planning 
and structuring lessons, especially in relation to our participation heuristics.

1 We note that these practices are not always explicitly referred to as high leverage teaching practices.
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In this paper, we share insights from a design-based research project focused 
on adopting and adapting three K-12 HLTPs to an undergraduate proof-based set-
ting where participation was explicitly foregrounded. The project included six 
implementation cycles: two in a lab setting, three with a research team instructor 
(Author 1), and one with an external instructor. We focus on ways we engineered 
the HLTPs in the proof setting to better support student access and engagement 
in AMPA. Our contribution to literature is two-fold. First, by centering HLTPs as 
objects of design, we are attending to collegiate instruction in explicit ways that are 
often backgrounded. This is especially essential when considering how these ele-
ments of instruction may shape more or less equitable classrooms. Second, instruc-
tional design in relation to formal proof and participation is infrequently the focus 
of design research. The overarching design question guiding our project was: How 
might HLTPs be adapted and incorporated into the advanced mathematics class-
room to support students in authentic proof activity? For the scope of this paper, we 
focus on lessons we learned during implementation of HLTPs that helped us achieve 
our participatory learning goals. For each HLTP, we share two instances that reflect 
design shifts. These shifts reflect either proof-specific adaptations that occurred 
when implementing the HLTP (i.e., not salient in the K-12 literature) or a substan-
tial task refinement that occurred between implementation cycles (in service of our 
access and engagement heuristics).

Background on the High Leverage Teaching Practices

We operationalize high-leverage practice through an integration of Woods and Wilhelm’s  
(2020) and Ball et al.’s (2009) definitions. Woods and Wilhem explain a high-leverage 
practice as, “routine aspects of teaching, which guide teachers to integrate students’ 
thinking, content knowledge, and equity” (p. 106). Ball et al. (2009) focus on “activi-
ties of teaching that are essential to the work and that are used frequently, ones that 
have significant power for teachers’ effectiveness.” (p.461). We accordingly maintained 
four criteria. A high-leverage teaching practice is an aspect of teaching that (1) can be 
implemented routinely, (2) uses, shapes, or otherwise integrates students’ mathemati-
cal thinking, (3) has potential to increase equity, access, and/or engagement, and (4) 
is supported by research connecting the practice to students’ learning. In the section 
that follows, we provide evidence from the K-12 literature base that HLTPs can support 
students in accessing and engaging in robust mathematical activity. We note that we 
selected three HLTPs that meet our criteria and that also had the characteristics of being 
plannable and serving to help structure classroom lessons. Our focal HLTP are reflec-
tive of larger grain practices (informed by works such as Stein et al.’s (2008), practices 
for orchestrating discussion and Thanheiser and Melhuish’s (2022) teaching routines.) 
HLTPs such as questioning (which is in-the-moment and not a larger structure) or les-
son planning (which occurs outside of classroom instruction) were accordingly not the 
focus of design and refinement, though we engaged in these practices. For each HLTP, 
we provide a description, set of evidence, and reflection on how the HLTP has been 
documented to tie to equity and access. We note that the operationalizations below are a 
synthesis of our understanding of the practices from the K-12 literature.
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Launching Complex Tasks

One essential practice is launching (and maintaining) tasks in a way that students 
can make sense of the task and engage productively (Woods & Wilhelm, 2020). This 
includes supporting students in understanding the relevant contextual features and 
mathematical ideas and relationships prior to engaging in problem-solving along 
with supporting students in developing a common language (Jackson et  al., 2012, 
2013). Jackson et  al. (2013) documented that complex task launch was a positive 
predictor of students’ opportunity to learn in whole class discussion. Such results 
are consistent with other studies of task launch and maintenance by specific instruc-
tors (Khisty & Chval, 2002; McClain & Cobb, 1998). Tools for K-12 teachers, such 
as Smith et al.’s (2008) task launch protocol, have served as a means to operation-
alize some of this work. The protocol involves reflecting on definitions, concepts, 
and ideas as well as what prior knowledge/relevant life experiences students need to 
engage with a particular task. Further, the work to make mathematical contexts, lan-
guage, and ideas accessible does not have to come at the launch of the task, but also 
occurs in conjunction with students engaging with problems (Khisty & Chval, 2002; 
Livers & Bay-Williams, 2014; Moschkovich, 2013) where issues related to vocabu-
lary or questions of context can be addressed as they emerge.

Complex task launch has been associated with increased opportunity for students 
of various backgrounds to learn (Khisty & Chval, 2002; Spooner et al., 2017). Math-
ematical tasks are embedded with contexts and content that may not be meaningful 
to students and can serve as barriers rather than opportunities (Sullivan et al., 2003). 
Attending to task launch and maintenance can serve to mitigate these issues by estab-
lishing common understanding of the mathematics and task at hand (Staples, 2007). 
We operationalize this HLTP as:

The teacher engages students in making sense of tasks via attending to rele-
vant mathematical language, ideas, relationships, task contextual features, and 
development of a common understanding of the task goals and context. This 
practice occurs prior to or in parallel with problem-solving, but does not scaf-
fold or directly instruct on solutions to the task.

Structuring Group and Partner Work

Group and partner work often serve as an essential role in student-centered classes. 
Structuring these interactions shapes the opportunity for students to productively 
work with one another and with the mathematics (TeachingWorks, 2018). In order 
to do this, teachers can socially and mathematically structure group work so stu-
dents have clear aims, goals, and expectations on what to do and how to interact. 
Webb’s (2009) literature review points to variations in this HLTP including: posi-
tioning students as having diverse contributions (and describing these), providing 
instruction on how students can participate actively, providing explanation prompts 
(explicit, targeted things to talk about), focusing on questioning or debate, or role 
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specialization. Structured group work has the potential to increase learning out-
comes (Gillies, 2003) and promote high level reasoning and discussion (Cohen, 
1994).

Setting up group and partner work productively is important to promote respect-
ful interactions between students and mediate for issues of status that can lead to 
group work being dominated by students perceived as “high status” (Cohen, 1994; 
TeachingWorks, 2018). In Esmonde’s (2009) review on supporting equity in group 
work, they similarly point to structures such as roles or scripts that have been linked 
to supporting more equitable interactions where students are positioned as com-
petent contributors of mathematics. Although, they caution that the teacher’s role 
includes continuing to manage groups to ensure roles or scripts are taken up. We 
operationalize this HLTP as:

The teacher structures and manages partner and group work in order to engage 
all students meaningfully in mathematical activity. This can include scripts, 
clear mathematical activity expectations, and/or roles that provide guidance 
for how students are to interact with each other and the mathematics.

Selecting and Working with Public Records of Student Ideas

The third HLTP we consider takes place in whole class when student strategies are 
publicized and become the focus of discussion (TeachingWorks, 2018; Wilburne 
et al., 2018). Stein et al. (2008) illustrated how this HLTP unfolds as teachers antici-
pate, select, sequence, and then work with public records of student ideas to focus 
students on key mathematics. By having students present ideas and working with 
them publicly, common ground can develop as students have the opportunity to make 
sense of each other’s thinking (Staples, 2007). This teaching practice emphasizes not 
just students sharing strategies and ideas, but that these contributions become the 
focus of continued discussion. Students may be prompted to make sense of each oth-
er’s ideas, critique and debate claims and approaches (Lampert, 1990; Staples, 2007), 
and compare across strategies (Durkin et al., 2017). Engaging students with multiple 
student strategies, and in particular, focusing students on comparison, can lead to stu-
dents developing more flexible mathematical knowledge.

In Jackson and Cobb (2010) reflection, they noted that discussion of student 
thinking plays an important role in equitable teaching. By sharing ideas publicly and 
engaging in discussion, students do not just have a chance to hear each other’s think-
ing, but “provides all students including students who are currently struggling with 
the particular mathematical ideas at hand, with adequate supports so that they might 
understand others’ explanations” (p. 5). Furthermore, by having the students present 
and analyze ideas, they may increase their mathematical agency (Brown, 2009), and 
classrooms that include public discussion of students’ multiple representations and 
strategies have been linked to more equitable assessment outcomes (Silver & Stein, 
1996).

We operationalize this HLTP as:
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The teacher orchestrates mathematical discussion where (1) students publicly 
present ideas and (2) students are prompted to meaningfully engage with the 
ideas through analyzing, critiquing, and/or comparing across student ideas.

Motivating the Study of the HLTPs in Undergraduate Proof Classes

There is a growing body of literature regarding inquiry-based mathematics education 
(Bouhjar et al., 2021; Larsen et al., 2013; Laursen & Rasmussen, 2019) in advanced 
mathematics courses, including proof-based classes. We argue there is a need to adapt 
and study HLTPs in proof-based classes for two reasons: (1) inquiry instruction is not 
equivalent to equitable instruction and thus there is a need explore ways to intention-
ally promote access and equity in student-centered instruction and (2) while there are 
substantial histories of inquiry curriculum development in proof-based courses (e.g., 
Larsen et al., 2013; Starbird, 2015), there is far less attention to instructional prac-
tices. Melhuish et al. (2022a) found that the majority of the literature on instruction  
in student-centered proof-classes focused on either student outcomes (such as student 
performance or affect markers) or instructor beliefs, knowledge, and instructional  
challenges. The instructors’ role is often backgrounded in service of other research 
goals. For example, group work is often a substantial component of inquiry-oriented 
instruction (e.g., Andrews-Larson et  al., 2017; Rasmussen et  al., 2015); however,  
studies rarely address how that group work is enacted beyond description of the task.  
We position our study as complementary to this literature on student activity and curricu-
lum, but unique in that we expand the object of design to incorporate specific elements of  
teaching, namely our three focal HLTPs.

Finally, we recognize the need to study the HLTP in these courses rather than just 
directly adopt them from the K-12 setting. While we hypothesized the fundamental 
roles of the HLTPs may stay consistent, their enactment in proof-based courses is 
likely to be shaped by the unique context of working in the formal representation 
system of proof (Weber & Alcock, 2004). There is a substantially increased level 
of abstraction (Hazzan, 1999) and new ways of argumentation that are beholden to 
idiosyncratic mathematical conventions (Lew & Mejía-Ramos, 2019) and specific 
norms and values of the mathematician community (Dawkins & Weber, 2017). 
Much of the literature in this area points to the challenge of this transition for stu-
dents (Stylianides et  al., 2017), and thus we anticipated that engaging students in 
authentic mathematical proving activity will be a non-trivial task and involve sub-
stantial intentionality and engineering.

Authentic Mathematical Proof Activity and Participation Heuristics

In undergraduate proof-based courses, typically taken by mathematics majors 
and future secondary mathematics teachers, the primary object of study becomes 
the formal mathematical proof. We take a participatory stance on student learning 
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borrowing the notion of productive disciplinary engagement from science education 
(Engle & Conant, 2002). That is, our goal was to engage students in activity that 
resembles the work of research mathematicians. We hypothesized that HLTPs can 
support our student activity goals by providing structures and mechanisms to engage 
students meaningfully with tasks and each other.

Proof Foci of Tasks and Activities: Proof Construction, Validation, 
and Comprehension

Most of the extant research in undergraduate proof settings focuses on students’ abil-
ities in the realms of proof construction, proof validation, or proof comprehension  
(Selden & Selden, 2017; Stylianides et al., 2017). Proof construction can be broadly  
conceived of as the development of an argument which contain conclusions  
(the statement to be proved), data (which provides the foundation of the argument), 
and warrants (which provide the justification to connect the data to the conclusion) 
in alignment with Toulmin (1958) argumentation scheme (Simpson, 2015). A math-
ematical argument is then a formal proof when it “dr[aws] on symbolic notation and 
logical reasoning” (Fukawa-Connelly, 2012, p. 333). The proof construction process 
can stem from informal ideas such as those that come from exploring examples or 
diagrams that can then be formalized through activities such as elaborating, syntac-
tifying, and rewarranting (Zazkis et al., 2016).

While proof construction is most prevalent in the literature (Mejía-Ramos & 
Inglis, 2009), proof validation is also an important aspect of mathematician activ-
ity (Weber, 2008; Weber & Mejía-Ramos, 2011). Weber and Alcock (2005) have 
suggested validating a proof is exploring whether “If (a subset of the previous asser-
tions in the proof), then (new assertion)” (p. 37) is warranted at each line of proof. 
Studies have suggested that mathematicians validate in two phases: determining the 
structure of the argument and then checking each line of the argument. As such, 
validating activity may be identified through the lens of organizing information into 
what is known and what needs justification, evaluation of warrants of claims, and 
appropriateness of proof structure.

Finally, proof comprehension is an essential aspect of mathematicians’ activity 
(e.g., Melhuish et  al., 2022b; Weber & Mejía-Ramos, 2011). Mejía-Ramos et  al. 
(2012) have developed a framework for assessing proof comprehension highlight-
ing two main dimensions: local understanding (which can be gleaned from a small 
number of statements within a proof) and holistic understanding (which cannot). In 
particular, their model identifies three aspects of local understanding – meaning of 
terms and statements, logical status of statements and proof framework, and justi-
fication of claims – and four aspects of holistic understanding – summarizing via 
high-level ideas, identifying the modular structure, transferring the general ideas or 
methods to another context, and illustrating with examples. Thus, we operationalize 
proof comprehension as attending to local and global aspects of an existing proof to 
understand both the argument and its constituent parts.
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Authentic Mathematical Proving Activities (AMPA) and Participation Heuristics

In order to account for student activity in classroom settings, we developed the 
Authentic Mathematical Proving Activities (AMPA) framework (Melhuish et  al., 
2022b) via a synthesis of the literature on mathematician activity to further opera-
tionalize their objectives (objects, motives) and tools in their activity systems. The 
objects of activity include proofs, concepts, and propositions. With regards to each 
of these objects, we identified three main motives related to these objects reflective 
of comprehending, constructing, and validating. Activity then consists of objectives, 
combining these objects and motives (e.g., constructing a proof, comprehending a 
proposition). Tools are then used to achieve these motives. For the purpose of this 
paper, we do not expand on all of the framework’s tools, but provide some examples 
to situate our goals and results which focus on instructional elements more so than 
student activity. We note that these tools include processes such as analyzing and 
refining (the activity of exploring and modifying an extant object (proof, statement, 
or concept) via examining assumptions and implications) or warranting (identifying 
implicit/explicit warrants in a particular claim). They also include other resources 
such as using diagrams, examples, or logic. We consider a student engaged in 
AMPA when they are taken on authority and agency in using disciplinary tools 
towards disciplinary objectives.

With this goal in mind, we elaborate the two participation heuristics we shared in 
the introduction:

• (Access) Providing access to opportunities to participate in authentic mathemat-
ical proof activity.

• (Engagement) Promoting participatory equity in authentic mathematical proof 
activity engagement.

The access-related heuristic focuses on whether students have the opportunity to 
engage in tasks that can lead to AMPA. Such opportunities depend both upon the 
tasks teachers provide and whether students have the necessary resources and under-
standings to engage in intended ways. Access is infrequently uniform across students 
and those students who more quickly draw on definitions, theorems, relevant under-
standings, and accurate interpretation of formal mathematical language may have 
increased access to AMPA (e.g., Moore, 1994; Weber, 2001; Weber & Melhuish, 
2022). Thus, a driving feature of our design is maximizing access to opportunity for 
AMPA. The engagement heuristic helps us attend to whether students realize these 
opportunities in equitable ways. That is, are all students taking on the disciplinary 
activity in meaningful ways? Brown (2018) and Reinholz et  al. (2022) have docu-
mented ways that students (particularly those of minoritized backgrounds) may not 
have equal opportunity to participate in small groups and whole class discussion, 
respectively. As argued by Brown (2018) and Johnson et al. (2020), inquiry is not a 
panacea for equitable instruction, and equitable instruction involves intentionality in 
instructional practice beyond providing rich tasks. We see both heuristics as essential 
to our instructional engineering of high-leverage teaching practices.
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We provide clarifications regarding these foci. First, they are not independent. 
Without access to opportunities and resources, equity in participation cannot occur. 
Second, we are not attending to a number of aspects of supporting equitable learning  
environments that go beyond our central focus on participation in AMPA. We take 
caution not to overstate claims of creating equitable classrooms. Finally, we note  
that initial design focused on the first heuristic; however, observations about dispari-
ties in participation and in what ways during early cycles led to the explication  
and attention to the second heuristic with intentional modifications in later cycles.

Methods

The data from this paper comes from several cycles in a design-based research pro-
ject (Cobb et al., 2003). The project focused on the development and refinement of 
HLTPs in the context of three introductory abstract algebra lessons. We are using a 
design-based research approach due to the project aims of theorizing and developing 
curricular materials. As Cobb et al. elaborated, design-based research contains five 
features. First, the research involves developing “theories about both the process of 
learning and the means that are designed to support that learning” (p. 10). For our 
project, we take a participatory lens on learning placing HLTPs and their relation 
to student engagement in AMPA as the focus of theorizing. The second feature is 
that our project is highly interventionist. We are studying instruction and learning 
as it plays out. We note, that means, “the study of phenomena as complex as learn-
ing ecologies precludes complete specification of everything that happens” (ibid., p. 
10). Unlike experimental research, we are not attempting to account for all variables, 
but rather are studying a system with forefronted planned elements (HLTPs, tasks) 
while other elements are backgrounded. The third feature reflects the prospective 
and reflective nature of these experiments. We came into our work with a theory 
of how HLTPs and specific proof tasks may support student engagement in partici-
pation. As the cycles of the experiment played out, we developed more local con-
jectures and detailed understanding of mechanisms involved using many levels of 
analysis. This leads to the fourth feature, the iterative design of this type of research 
where conjectures and evidence lead to revision. The final feature reflects the nature 
of the theories produced. They are not global learning theories, but rather local to 
the problem targeted by the design experiment. At the same time, the insights devel-
oped should not be so constrained to a particular setting that others cannot make 
use of the insights. In order to meet the final features, we engaged in many cycles of 
theorizing and design, implementation, analysis, and refinement in different settings 
to increase transferability. Presenting our findings as lessons learned and shifts made 
in iterative design represents our attempt to report in a manner that is true to design 
research and likely to render our specific insights adaptable to other researchers and 
instructors.
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The Focal Lessons

Each of the lessons was designed with the primary goal of engaging students in 
validating, constructing, and comprehending proof, respectively. The lessons were 
designed to take one class period of 1 hour and 20 minutes; however, depending on 
implementation some lead-up or wrap-up work occurred in the class session before or  
after. Lesson 1 (which we refer to as the Structural Property Task) focuses on the  
theorem: Let G and H be isomorphic groups. If G is abelian, then H is abelian. 
This theorem was selected because it is a common type of theorem in abstract alge-
bra and students often approach it in two different ways (Melhuish et al., 2019): 1) 
beginning with elements in G and showing their images commute or 2) beginning 
with elements in H and showing they commute. This allows for students to inves-
tigate the differences between approaches, validate the approaches, and refine the 
proof or alter the statement to only use the necessary assumptions. Lesson 2 focuses 
on Lagrange’s Theorem. This theorem was selected because the key idea can be 
apprehend via example exploration (e.g., Leron & Zaslavsky, 2013). Students inves-
tigate example groups and their cosets, attend to the multiplicative structure (key 
idea), and develop a set of lemmas about cosets to construct the proof. Lesson 3 
focuses on the First Isomorphism Theorem which was selected due to the complex-
ity involved in the proof (Nardi, 2000) and has students engage in comprehending 
the statement (via example exploration) and the proof (via identifying structure and 
line-by-line explorations). See Appendix for a complete outline of the final version 
of the lessons.

Design Cycles and Setting

Participants were undergraduate mathematics majors (some dually earning high 
school teaching certification) from a large, research university in the United States. 
The participants had all completed a transition to proof class. Students from the lab 
setting had completed abstract algebra and students in the classroom were several 
weeks in and had been exposed to basic definitions and proof techniques. Informa-
tion from each cycle can be found in Table 1.

The design process entailed several phases of  developing and modifying focal 
tasks, planning enactment of HLTPs, and hypothesizing corresponding student 
activity in terms of participation in AMPA. The tasks were implemented, first  
in a lab setting, then in the classroom. The lab settings (where students engage with tasks  
and instructor-researchers outside the confines of a classroom and full-sized class) 
were led by the first author as instructor-researcher and third author who observed 
and interjected questions and prompts at relevant times. Author 1 implemented the 
first three classroom implementations. The classroom implementations were inter-
rupted by pandemic protocols ending cycle 3 prematurely (after lesson 1) and lead-
ing to cycle 4 occurring online. We conducted the first two cycles in a smaller set-
ting to better allow for testing out the relationship between our tasks, HLTPs, and 
student activity. This afforded greater attention to student thinking and participation 
and removed some constraints of the normal classroom. Through the two lab setting 
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implementations, we developed more precise conjectures about the relationship 
between tasks, HLTPs, and student activity and made modifications for the class-
room. We initially planned only two classroom implementations. Since Cycle 3 and 
Cycle 4 were affected by pandemic protocols, we added Cycles 5 and 6, which were 
fully in-person. During the final implementation, we shifted from a research team 
instructor to an outside instructor to extend our movement toward less controlled 
and more naturalistic instructional settings. This allowed for the tasks and imple-
mentation guide to stand on their own and not be shaped by unaccounted knowl-
edge that was linked to being part of the design team. Additionally, an expert review 
panel provided feedback at key points (before cycles 1 and 3).

For each cycle, the task implementations were video-recorded and transcribed. 
Research team members (including Author 2 and 3) observed and took field notes 
on implementations attending to ways that students did or did not engage in hypoth-
esized activity including attention to equity in this participation within small groups. 
We engaged in both “design minicycles” and retrospective analysis in accordance 
with Cobb and Gravemeijer (2014). Design mini-cycles include debriefs after each 
lesson with the project team to come to consensus about the ways in which the les-
son enactment (including HLTPs) aligned with hypotheses in terms of supporting 
students in AMPA related to the lesson goals. In between each cycle, the project 
team met to reflect more holistically on the prior implementations, revisit important 
points in the data, and, in some cases, conduct extended analysis of particularly sali-
ent moments. We used a number of analytic tools in these various stages of analysis, 
including:

• the AMPA framework (Melhuish et al., 2022b) on data from cycles 1–3,
• The Math Habits Framework (Melhuish et  al., 2020) to analyze instructional 

moves in our initial plan and after cycle 3 implementation (the first in a class-
room), and

• The Activity, Authorship, and Animation (AAA) Authority Framework (Hicks 
et al., 2021) on data from cycle 2.

We selected this set of frameworks in order to gain more systematic insight into 
how our conjectured instructional approach and implementation linked to student 
activity, both in terms of the access heuristic (operationalized via AMPA) and the 
engagement heuristic (operationalized via analysis of who contributed to the AAA 
components). The results from these more systematic analyses complemented our 
broader design minicycle analyses. We revised our plan for implementation and/
or refined our use of the HLTPs whenever we identified evidence of disconnects in 
access to or engagement in proof activity, such as noticing students did not appear 
to have needed tools to make progress on an activity (an access issue) or that certain 
students dominated conversation (an engagement issue). Additionally, we identified 
spontaneous elements of instruction (e.g., instructor prompts that helped students 
past an impasse) and student activity (e.g., features of students discussion that led to 
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productive communication) that appeared supportive to our access and engagement 
aims, and often incorporated these into our task materials.

We began with rather primitive hypotheses linking HLTPs to supporting students 
in rich discussion and participation in proof activity. Initially, we designed each les-
son to have a focal HLTP and proof activity pairing: selecting and working with pub-
lic records of student ideas and proof validation, using and connecting mathematical 
representations and proof construction, and launching complex tasks and proof com-
prehension. We paired the practices intentionally drawing on (1) the idea that stu-
dents may be focused on important structural aspects of their proofs via comparing 
public records (and thus attend to validating them), (2) working with visual records 
can support apprehending key ideas needed to construct proofs, and (3) complex 
task launch to support accessing and comprehending ideas in proofs. However, we 
quickly discovered that trying to isolate practices in this way oversimplified a com-
plex setting and relegated the role of non-focal HLTPs to the background. During 
later cycles, we attended to all focal HLTPs throughout each lesson and in relation to 
different proof activities, although the hypothesized pairings remained some of the 
most salient. Additionally, we more thoroughly incorporated the HLTP of Structur-
ing Group Work midway through the project when our analyses pointed to unbal-
anced participation in group work. We note that while visual records remained a part 
of our design, we background this HLTP this manuscript as it has a more thorough 
treatment in undergraduate settings.

At the completion of the data gathering, we engaged in a retrospective analysis 
focused on the characteristics of the HLTPs as mechanisms to support students in 
engaging in AMPA. The crux of our design focused on hypotheses related to ways 
that carefully planned and designed HLTPs (in conjunctions with tasks) can sup-
port students in access and engagement in AMPA as they comprehend, construct, 
and validate proofs. This analysis differs from the cognitive analyses most common 
in studies of proof-based learning contexts. We are not attempting to make claims 
about students’ knowledge or evolution of knowledge. Rather, we focus our claims 
specifically on the links between HLTPs and participation. Thus, we leverage our 
data corpus, including the various analyses described above, to provide images of 
how the HLTPs supported access and engagement in AMPA. The theory arising 
from our design experiment also entails aspects of student understanding of particu-
lar topics and their learning about abstract algebra, but our goal in this paper is to 
portray aspects of the emerging theory relating instructional moves and participation 
in proof activity. The stories and challenges described in the results section convey 
the lessons we learned that constitute a core of that part of our theory. We share 
examples from different points in our design because they were the occasions that 
led to modification and elaboration of our understanding of how HLTPs can sup-
port AMPA. The examples span the duration of the project, and in each case, we 
share evidence of what played out uniquely in the proof context (thus, elaborating 
our understanding of HLTPs in the proof setting), and for instance that led to modifi-
cation, we provide some detail of the impact of particular changes.
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Results: Lessons Learned from the Orchestrating Discussions Around 
Proof Project

In order to share insights from this design project, we present our results as a series 
of episodes and noticings that occurred through the design and instructional engi-
neering process. We organize these results by situating these instances within each 
HLTP to which they were most related. However, this treatment is done for read-
ability purposes rather than implying that each teaching practice operates disjointly.  
In fact, teaching practices can and often do overlap. For example, students may engage 
in structured group work around a public record from discussion. Further, ramifications  
of decisions made in service of one HLTP can influence activity in many elements  
of a lesson.

Launching Complex Tasks in the Proof‑Based Setting

In the K-12 setting, launching complex tasks involves making sense of task contexts, 
questions, and anticipating key mathematical structures and relationships that might 
support students in productive problem-solving (adapted to proving activity for our 
work). We designed task launch to include (1) unpacking key definitions and rela-
tionships in theorems and (2) using examples and visual representations to make 
sense of key ideas in theorems. These two activities were designed to anticipate 
proof structure (Samkoff & Weber, 2015) such as providing a definition that antici-
pates a proof structure (e.g., definition of abelian when showing a group is abelian) 
or provide insight into key ideas (Raman, 2003) and structural features (e.g., seeing 
the structure of cosets to structure the proof for Lagrange’s Theorem). Further, we 
keep a public record of definitions and other key ideas students may need to provide 
a resource for students’ mathematical activity to build from.

We argue that these are essential elements needed for productive proof engage-
ment based on the multitude of literature that suggests novice provers understanding 
of concepts and definitions (e.g., Moore, 1994) greatly shapes their proving activity 
and that identifying and working from key ideas is more consistently found in expert 
provers’ practice (e.g., Raman, 2003). In this section, we share two learnings from 
implementing complex tasks launches. First, we discuss teaching prompts related 
to object references and quantification, a type teacher prompt that was important in 
proof setting, but not emphasized in the existing K-12 literature that informed our 
design. Second, we share a major modification we made as a result of finding that 
students were not anticipating proof structures in the ways we initially hypothesized 
for the proof construction task (Lagrange’s Theorem.)

Increasing Support of Students’ Access to Formal Mathematics Through Identifying 
of Mathematical Object Referents and Quantification

While many of the instructional prompts we documented directly paralleled those 
found in the K-12 literature, mathematical object referents and quantification seemed 
unique to the undergraduate setting. Furthermore, the need to support students in 
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recognizing mathematical object referents and the role of quantification occurred 
across implementations and types of lessons, and ultimately became a planned part  
of instruction in later rounds. Because these tools (such as definitions, statements,  
and their referents) were needed to engage students in the different types of activi-
ties to come, we chose to give class time to unpacking these during complex task  
launches to better support students in developing shared understandings that would 
carry through the lesson. We use the structural property task as an illustration. As  
students suggested the assumptions and conclusions, common responses include  
“one-to-one” and “onto” without referring to the mathematical object that has these 
properties. In one implementation, a student offered “G and H are a group isomor-
phism.” This led the instructor to ask “who do we call isomorphism?” to which  
another student responded, “G goes to H” which again the instructor asked “What do 
we call that?” with the student responding, “ϕ”. Figure 1 represents the public record  
of student suggested ideas and definitions. Similar conversations have occurred about 
asking what type of “object ϕ is?” to draw attention to ϕ as a function and asking 
whether a “homomorphism” was a function or a property. This relates to the subtle  
issue of properties being defined by the existence of a function. Furthermore, during these 
exchanges students tended to provide unquantified statements. When asked to unpack  
abelian, a student suggested “xy = yx” in one class and “There’s an a and b in the  
group that also, a operated with b also equals b operated with a” in another class. In 
both cases, the quantification remained unclear and the instructor followed up to ask 
questions such as “is it for some a, for all a, are these arbitrary?” with many students 
in the class clarifying, “for all a.”

Fig. 1  Public record of student assumptions, definitions, and conclusions for the structural property task
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If we reflect on our guiding heuristics, these two types of prompts were recog-
nized and intentionally integrated into future iterations for several reasons. First, 
quantification plays a key role in productively engaging in the proving and validat-
ing activity, both generally and in our tasks. In some sense, the difference between 
the “valid” and “invalid” proof approach to the structural property task is attention 
to the role of “for all” in the abelian definition (and how it gets proved using arbi-
trary elements from H). Not attending to the role of “for all” in their proof com-
prehending activity limited their opportunity to recognize the proofs’ validity. Sec-
ond, discussions about mathematical objects and their referents became vital when 
considering access and promoting opportunities for all students to engage. While 
some students were immediately able to engage in constructing, comprehending, 
and validating proofs with complex levels of objects and symbols, other students 
would hit an impasse at different stages. For example, when constructing initial 
proof approaches in the structural property task, some students were unable to get 
started as they lacked the necessary tool of introducing a ϕ to build an argument. 
The importance of referent objects became a significant compounding factor in later 
activity such as dealing with the FIT where the presence of multiple functions can 
lead to the proof becoming impenetrable (see Nardi, 2000). In our early lab settings 
and online implementation, we found that without explicit attention to symbols and 
referent objects, students made little headway into mechanics of the proof. This is an 
idea we will revisit in the group work section.

Supporting Students’ Engagement in Proof Production and Proof Understanding Via 
Unpacking Structural Elements and Meaning Beyond Formal Definitions

In our initial implementation, we focused primarily on objects and formal defini-
tions as part of complex task launch. This was often accompanied with exploring a 
few examples to notice structural features and tie features of the examples to their 
role in the focal theorems. However, we found that such exploration may remain 
disjointed from future activity without active anticipation and focus on how a struc-
tural noticing may carry over to a proof context. This was particularly apparent in 
the Lagrange Theorem task that hinged on students noticing the key idea that cosets 
induce a multiplicative structure on the elements in a group. We initially hypoth-
esized that students could produce a multiplication argument by unpacking the state-
ment and arriving at a multiplication goal (WTS: |G|= k|H| for some k) and then 
connecting |G|, k, and |H| in their diagrams. This link was tenuous for students. 
We made the most substantial modification after the first implementation of the 
Lagrange Theorem task. We will briefly share how the first implementation played 
out and then data from the second implementation that was more productive.

In the first implementation, the students had explored multiple examples of 
groups and subgroups and identified where they could see the parts of the theorem, 
but hit an impasse as they attempted to use their examples to build their argument 
focusing on showing there is “no remainder.” Anna suggested, “What if we did a 
couple of cases, like where the order of the group was even, or it was odd? If it’s 
even, you have … Then it’s just 2 k and if it’s odd, 2 k + 1.” Elena continued this line 
of thinking addressing various cases reflecting different “factor[s]” and the students 
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elaborated that they needed to show there would be no remainders. However, after 
some work, that last of the trio, Elsa commented, “It would be a really big proof.” 
First, we want to note that the students’ approach was quite reasonable. We conjec-
ture that they were relying on prior proof experience where number theory argu-
ments about division often rely on particular cases. They focused on not having a 
remainder. That is, they were drawing on prior strategic proof knowledge rather than 
drawing on coset explorations to formalize. Ultimately, the instructor heavily scaf-
folded the connection and, we would suggest, was the only one engaging in AMPA 
by the end of the lesson. This did not fulfill our overarching goal to engage stu-
dents in AMPA where informal activity (example-based) and formal activity (proof) 
served a mutually supporting role (what some researchers may suggest to be cogni-
tive unity, Garuti et al., 1998).

As a result of this experience, we hypothesized that additional instructional sup-
port may be needed to help students draw upon their informal exploration in formal 
contexts. In this particular case, we expanded the task launch to include not just 
formal definitions, but also having students recall more informal ideas about mul-
tiplication that can serve to bridge between the activities. As students considered 
their multiplicative statement “WTS: |G|= k|H| for some k”, the instructor-researcher 
prompted them to “[c]aptur[e] this with a visual. How is this illustrating what we 
mean by multiplication?” They also provided specific numbers 12 = 3 × 4 prompt-
ing “let’s think back to elementary school when we write these things, and we’re 
gonna make a similar type of visual to go with this that’s kind of connected to what 
we mean by multiplication. See if you can also sketch something out that goes with 
this idea of 12 = 3 × 4.” After some partner discussion, the instructor-researcher then 
guided a full group discussion about a definition for multiplication that built from 
student suggestions of “repeated addition” and “totaling up.”

After some additional exploration and lemma generation about cosets, the 
instructor-researcher prompted the students in this group in much the same manner, 
“So if these three lemmas are true, how might they help us establish the multiplica-
tion structure that we were trying to get up here?” In this case, the students were 
able to translate between informal and formal with one student, Jasmine, explain-
ing, “Oh, so like the union of the cosets is G is basically k x H.” Asked to repeat, 
she elaborated, “The first lemma, that the union of the cosets is G. The repeated 
addition kH. I mean, when you merge them together, you get a G.” The conversa-
tion continued with the students connecting each of the lemmas to their role in the 
multiplicative structure. Notice that the students are drawing on the shared language 
of “repeated addition.” We saw this as evidence that work done at the task launch 
supported the students in engaging in more authentic proof activity.

This example is emblematic of a larger activity trend. We observed that the switch 
to formal proving often primed students to draw on formal proof knowledge to the 
exclusion of informal explorations. The proof construction task hinged on leveraging 
the “key idea” of multiplicative structure, and thus needed intentional engineering to 
engage students in using their informal understanding of multiplication in relation 
to the formal proof. We suggest this result generalizes as key ideas are by definition 
a means of connecting informal and formal. Such a connection may be obvious to a 
more experienced prover; however, it needs explicit parallelism for a more novice 
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prover to use their informal ideas to support proof construction. Throughout differ-
ent tasks and HLTPs, there was a need for instructors to orient student ideas such 
that there was consistency and connection across informal and formal representa-
tions. We return to this theme in other sections.

Reflection on Launching Complex Tasks in the Proof Based Setting

In many ways, we were able to import the primary essence of complex task launch 
from K-12 mathematical settings. Our implementations suggested several nuances 
that are likely proof-context specific (or at least more salient in this setting.) These  
considerations were primarily access-driven. First, attention to mathematical objects 
and their referents is crucial to developing a shared language and providing the basic 
tools for students to engage in activity. Second, quantification is a huge aspect of defi-
nitions and particularly how definitions relate to proof structures. Students’ descrip-
tions of mathematical ideas may lack that level of precision – and for good reason.  
That level of precision did not serve much purpose in non-proof based classes. How-
ever, in these contexts it is essential and can support later activity. Third, one of the  
most challenging aspects of complex task launch was anticipating ways to support stu-
dents in not just seeing important structural relationships (which is an element of this 
work in other mathematical settings), but the tools needed to link structural relationships 
in an informal discussion to later formal proof activity. We suggest explicit attention  
to ideas that may bridge and anticipate proof structure (beyond just formal defini-
tions) that can serve to alert students in making connections.

Structuring and Managing Group work

A key component of group work is designing and developing tasks that are group-
worthy (Lotan, 2003). In the context of design-work in proof-based classes, the 
focus is often on the nature of the task, a necessary component for group work 
where students may work on challenging proof construction or a task trajectory that 
supports reinvention of formal mathematical concepts (e.g., Larsen, 2013). How-
ever, in our engineering we also attended to instructional choices about the structur-
ing and management of this work–how would students actually do this work in a 
group setting? Initially, we relied on two mechanisms for structuring group work, 
“think-pair-share” (Kaddoura, 2013) and partner exchanges (similar to peer review, 
Reinholz & Pilgrim, 2021). Such approaches have been documented in proof-based 
instruction; however, in accordance with our guiding heuristics, we found a need for 
more complex and intentional structures to promote more equitable participation in 
AMPA. In terms of group work, we identified this need from several perspectives. In 
the initial in-class implementation, we witnessed imbalance in how students partici-
pated with their partners. A later analysis of the lab setting experiments also pointed 
to inequities in participation (see Hicks et  al., 2021). Finally, during the online 
implementations, we noted that unstructured group time often resulted in both low 
participation by some members of groups and, in some cases, no student activity 
met our definition for AMPA. In this section, we share two types of modifications 
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we introduced to group work between cycle 4 (the online cycle) and cycle 5 (the 
first full in-person classroom implementation.) Both draw on ideas from complex 
instruction to promote more equitable group work (Cohen & Lotan, 1997) including 
expanding expertise (a more thorough treatment of this idea can be found in Weber 
& Melhuish, 2022) and distributing responsibility. We begin by sharing data from 
the structural property task that contained a partner exchange to show how this type 
of structure may be insufficient to promote equitable participation across partners. 
We then share data from the FIT task where a think-pair-share structure was also ini-
tially insufficient and ways that we incorporated more intentional sharing of respon-
sibility amongst group members.

Adjusting Partner‑Exchange Structures to Increase Participation and Decrease 
Status Disparity During Proof Comprehension Phases

Differences in students’ comfort in beginning the production of a formal proof is one 
source of inequitable participation in this context. Apprenticeship into formal prov-
ing requires a fundamental shift in argumentation and language. Knowing “where to 
start” is a substantial hurdle for novice provers who are only beginning to develop 
strategic knowledge (Weber, 2001) for operation in this system. As such, a status 
imbalance can occur between students who are comfortable with formal proofs and 
those less so. To illustrate this issue, we turn to the Structural Property Task. Our 
initial design involved students working with partners and exchanging their proof 
approaches. This was structured such that students were instructed:

I want you to come up with one thing that makes sense about what [your part-
ner] did and one thing that maybe you have a question about in regards to what 
was playing out or, how things are labeled, anything you can have a question 
about in here. Pull out your approach, exchange it with your partner, spend 
about two minutes reading through it, seeing if you can come up with one 
question and one thing that makes sense.

The instructor guided students in exchanging and taking on these roles. However, 
closer inspection of this activity revealed that these structures did not always play 
out and that certain students took on an “expert” role while their partners did not. 
Consider the following exchange:

Aiden: so I ask about your [pause].
Brianna: I guess. Even though I don’t know anything.
Aiden: I think there’s a problem with -- so you say, “since G and H are isomor-
phic, G and H are 1-1, onto, and homeomorphic”
Brianna: Oh, I was referring to um the property that she gave us, and then.
Aiden: but-- yeah I think the problem is that it’s just missing-- the thing that’s 
1-1 and onto is the function between them so it-- I don’t know if it’s right to 
say that G and H are 1-1 and onto but I would probably say there exists a func-
tion from G to H that is 1-1 and onto

Aiden then guided Brianna in the construction of a new proof.
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We conjecture this disparity occurred because Aiden had a mostly complete proof 
from the night before whereas Brianna had a set of initial ideas. We had moved the 
proof production portion to an at-home activity to not impose time constraints on 
the initial proof construction (an access decision); however, this did not mitigate the 
issue as only a handful of high status students (students who frequently participated 
at high rates) brought mostly complete proofs.

In the next iterations of this lesson, we transitioned from students discussing their 
own proofs to ones provided to them. These proofs were student-generated from a 
prior study (see Melhuish et  al., 2019). Each student in the class was given either 
Proof A (an argument beginning with arbitrary elements of the domain) or Proof B 
(an argument beginning with aribitrary  elements of the co-domain) and were pro-
vided private reasoning time to make sense of the proof in front of them with the 
instructor explaining [Cycle 5], “You’re kind of now the expert on, on the one in front 
of you. So I’m going to give you a couple minutes to try to digest it and think about, 
‘can you explain what’s going on in this argument to somebody who doesn’t see it?’”.

This approach led to robust conversations where we did not observe the same sort 
of status disparities or divergence from the intended activity. For example, consider 
the following partner discussion with Isabella (Proof A) and Jake (Proof B). Isabella 
explained her proof, “I’m going to say that this is ϕ. So it’s letting a,b be elements 
of G, so there exists a ϕ that a operation b is equal to ϕ(a) times ϕ(b) […] which 
also if you have ϕ(ba) is equal to ϕ(b)ϕ(a) since G is abelian.” Her partner then  
comments on what makes sense and asks a question about the connection to the 
codomain group H. The partners work together to summarize the main idea:

Jake: They’re just trying to show that…
Isabella: But they are showing that either way you write it…
Jake: That the [inaudible] no matter which way you would put it, would be okay.
Isabella: That’s why it is written three different ways, to show that, no matter 
which way, they’re all equal.

The partners then exchanged roles with Jake leading a discussion of the other 
proof approach and Isabella commenting on features of the proof. If we compare 
this conversation to the previous, we can see that both students are engaged in what 
we would call AMPA reflected in using tools, like summarizing, to engage in proof 
comprehension.

By switching the focal comprehension object to existing proofs, both students 
were positioned to have expertise (on their respective proofs) and there were more 
entry points into the activity. A natural critique of this modification is that the proofs 
are no longer stemming from students in the class. However, we highlight that this 
move opened an avenue for additional competencies and provided a means to sup-
port comprehension activity in more equitable ways. We share this example for a 
couple of reasons. First, this type of “construct a proof task” is very common to 
proof courses with active student engagement. Yet, there are substantial differences 
in students’ comfort, access, and knowledge of the formal proof construction pro-
cess. This may sometimes lead to quite different classroom experiences for different 
students (for example see Dawkins et al., 2019). If other designers share access and 
engagement goals, it is worth being strategic about when and how proof construction 
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tasks are used. Unguided open prompts to prove may inadvertently amplify status 
differentials.

Increasing Student Authentic Activity and Student Participation by Delegating 
Responsibilities to Engage with Formal and Informal Mathematics

In the lab setting (cycle 1 and 2), the instructor-researcher often asked students a 
series of targeted questions when they encountered challenges moving between 
formal and informal systems. In the full classroom context, an instructor no longer 
has the ability to engage in conversation with all students in small groups. After the 
online implementation (cycle 4), we found that when students encountered such chal-
lenges, they often did not have the tools to move beyond an impasse. Prior to cycle 5, 
we developed more sophisticated group structures (rather than just think-pair-share) 
in order to engage students in more authentic activity and to assure more voices were 
heard. Many of these modifications were in service of the FIT task as the formal 
proof involved making sense of abstract and layered arguments working to move the 
responsibility from instructor-researcher to students to orchestrate group discussion.

One strategy that proved useful was converting instructor prompts that were fruit-
ful into questions for students to lead discussion about. Many of these prompts shared 
common features with discussion elements from complex task launch. To illustrate, in 
the FIT task during cycles 5 and 6, the classes were subdivided into four groups and 
each group was given one section of the FIT proof to be responsible for explaining to 
the class. In order to promote more equitable participation, each member of the group 
was given one question and tasked with leading the discussion on that question. This 
provided support to engage in deeper AMPA and a mechanism to engage all students 
in having a meaningful role. The instructor launched the activity stating, “So, if you’re 
person one, your job is to bring this question to everybody and make sure you talk 
about it and resolve it as a group. But you definitely don’t have to do them individu-
ally.” They continued to clarify that the “questions build on each other” so students 
could not just work on their questions independently. Notice the focus is on both the 
responsibility of the individual but the need for collaboration amongst the group.

The questions were derived from using Mejía-Ramos et  al. (2012) proof com-
prehension framework in combination with key referent object prompts from earlier 
implementations. For example, each group had one student lead a discussion on, 
“What is the difference between β and ϕ?” in terms of the domain and codomain 
elements (the isomorphism and homomorphism maps, respectively). Across both 
implementations using this mechanism, all members of the small groups engaged 
in the conversations and a member of each group was able to come up to the board 
and provide rather sophisticated explanations of their proof sections addressing the 
referent objects accurately and warranting lines in the proof. We used roles and 
responsibilities for both constructing new objects (see Incorporating Public Records 
of Partial Information to  Promote Access to Formal Ideas in Relation to Students’ 
Informal Ideas), and in proof comprehension activities (including the FIT and 
partner exchanges from the structural tasks.) As this was a later adaptation to our 
sequence, we have less evidence of how structuring group work in such manners 
could occur throughout the tasks. However, we conjecture that this is a transferable 
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mechanism. That is, using roles and responsibilities that are mathematically mean-
ingful (such as leading a discussion around important aspects of a proof or exam-
ple), tied to proof activity aims (such as comprehending), can serve to support more 
equitable participation in terms of all students contributing to the group work. Spe-
cific to the proof setting, we aimed to incorporate roles and responsibilities that can 
serve to navigate between formal and informal.

Reflection on Structuring and Managing Group Work in the Proof Based Setting: Two 
Shifts We Made

One of the more challenging aspects of working in the proof-based setting is that 
the abstract nature of the mathematical content and the formal ways of arguing and 
communicating often privilege a particular set of competencies that may exacer-
bate status issues. In the literature, this is sometimes approached via differentiation 
of instruction such as having easier and harder proofs for students to engage with 
(Dawkins et  al., 2019). While such a mechanism may work in a more traditional  
IBL setting with a high degree of independent work, it does not easily import to a  
more collaborative setting. We found that we needed to evoke a range of com-
petencies (such as comprehending, validating, explaining a proof, generating and  
analyzing examples, rather than just constructing proof). We also found we needed to care-
fully delegate responsibilities such that there were multiple ways to remain involved. This  
was often partnered with assigning students tools to open opportunities for authen-
tic activity such as guiding questions or particular structures for example creation.  
While in some ways, this scaffolds the activity further than our initial design, we  
were able to document more AMPA amongst more students than in our less struc-
tured group work attempts.

Selecting and Working with Public Records of Student Ideas

Two types of public records drove this practice across our lessons: records of exam-
ples and records of proofs and proof elaborations. By proof elaborations, we mean 
students may or may not have developed the initial proof version, but publicly share 
their understanding of the proofs through recreation or elaboration (e.g., identifying 
objects and creating small deductive subproofs when needed). As in the K-12 setting, 
comparison was intended to highlight structural attributes. In the proof setting, this 
may highlight structural differences as between proof frameworks (Selden & Selden, 
1995) or structural commonalities that may anticipate a proof, such as the examples 
explored in service of the FIT and Lagrange’s Theorem discussed in the prior sections.

Attending to Whose Proofs and Products are the Focus of Engagement and Moves 
to Incorporate More Opportunity for Less Vocal Students’ Ideas to be Publicly 
Discussed

A key component of this work is anticipating the ideas that may be selected, 
sequenced, and compared (Stein et al., 2008) For example, the two proof approaches 
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structural property task stemmed from the most common approaches by students  
in survey study (Melhuish et al., 2019). However, we found that pre-planning which proof  
strategies to select for comparison limited whose ideas would make it into the public 
space. In our first classroom implementation (cycle 3) relying on this approach led 
to the selection of two, vocal, white mens’ proof approaches becoming the focus of  
the conversation for the duration of the class. The two students, in sequence, shared their  
proof approaches. These two approaches were anticipated and selected because they 
began the proofs in different locations (starting with elements from G and from H) 
and contrasting the proofs can draw attention to important structural features. After 
both students presented their proofs (see Fig. 2a), the instructor prompted the class 
to ask questions of the proof and then to address, “What do you see that is the same? 
What do you see that makes them different?” through a think-pair-share mechanism, 
which was structured such that Partner A had to share a similarity and Partner B had 
to share a difference. A whole class discussion then ensued with a public record of 
these noticings (see Fig. 2b).

Regarding student opportunities to engage in AMPA, comparing and contrasting 
public records of proofs was quite successful in all cycles. Students noticed all of 
the distinctions we anticipated including beginning the proof with elements in the 
domain or co-domain group, naming of the elements, and warrants. These structural 
differences anticipated later discussions of what assumptions were needed, validat-
ing and modifying the proof approaches, and attending to differences in proof frame-
works. However, we note that as in the small group discussion described in “Adjust-
ing Partner-Exchange Structures to Increase Participation and Decrease Status 
Disparity During Proof Comprehension Phases” section, the proof approaches that 
became the focus of the class may have reinforced status differences. The type and 
focus of participation was catered towards two students who wrote and explained 

Fig. 2  a The two student approaches to proving the structural property theorem. b Public record of stu-
dents identified similarities and differences across the approaches
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more complete deductive arguments. In later implementations, we changed the focus 
to the pre-existing student proofs to avoid this inadvertent difference in opportunity.

The attention to whose public record was also a factor in the other lessons. 
These records included not just proofs, but also examples to compare and general-
ize from. Although these examples were intended to be group products, we found 
they often reflected a particular individual’s contributions. In order to address this 
issue, we engineered the group work structures to provide particular roles for each 
group member (Cycle 5 and 6). For example, when illustrating the FIT, students 
were given a set of chalk and each of the following roles was assigned to a differ-
ent group member: identifying the domain and codomain elements, putting in the 
homomorphism map lines, identifying the kernel, and introducing lines representing 
the homomorphism. In this way, the public records (see Fig. 3) to be compared rep-
resented joint, rather than individual efforts.

Attention to the origins of public records was not attended to in the lab setting as 
the small number of students minimized the need for selecting only certain records 
to be shared. When transitioning to full class (cycle 3 and cycle 4), this issue became 
part of design minicycle discussions leading to the development of these two ways 
of countering the issue: introducing student work from outside of the class and intro-
ducing roles so all group members contribute to a public record.

Incorporating Public Records of Partial Information to Promote Access to Formal 
Ideas in Relation to Students’ Informal Ideas

A major theme across all of HLTPS across implementations was navigating between 
formal and informal representations. One main use of public records of student thinking 
was to have a series of examples publicly available to make comparisons and support 
students in seeing important structural attributes to support rich discussions, develop 
understanding of theorems, and anticipate elements of proofs. In Cycle 5, the first  
in-person implementation of FIT, we found that the conversation that ensued in the  
whole class did not achieve the primary goal of generalizing across examples. The 
instructor guided a discussion focused on one example (shown in Fig. 3) that largely 
reflected a traditional Initiate-Response-Evaluate (IRE) pattern of discussion. That is, 

Fig. 3  Cycle 5 small group 
student boardwork illustrating 
the FIT
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the instructor would ask a targeted question such as, “Where is the homomorphism?” 
and a student would respond “the red lines.” The instructor then would endorse and 
elaborate. While the examples seemed to serve a productive role in small group time, 
we were not able to evidence engagement in AMPA during the larger discussion.

By contrast, in Cycle 6, the instructor made the decision to orchestrate this discus-
sion to target a formal idea needed to make sense of the FIT proof. After students  
anticipated what needs to be proved for the theorem, the instructor tasked students 
with trying to write a definition for β by filling in: β (____) = ____. With a little dis-
cussion, students contributed that cosets go in the parentheses and they can be called 
“aK.” However, identifying the corresponding output involved more work. One stu-
dent suggested the “image of ϕ” (the relevant set) without specifying where a particu-
lar element goes. The instructor prompted students to compare across three examples 
on the board to try and use commonalities to identify a way to label the output of this 
isomorphism. After some initial student suggestions and discussion, they arrived at 
ϕ(a). The instructor then asked “Would that be consistent with what the three groups 
did?” walking around the room to consider each example. We highlight this imple-
mentation decision because it both supported students in AMPA (both in the moment 
and ultimately providing an access point in the proof comprehension activity) and 
helped the comparison of public records realize their full potential. We suggest an 
important transferable element: a partial formalization to connect between the infor-
mal examples and formal statement and proof. As discussed in earlier sections, stu-
dents were usually able to work quite productively within an informal or formal sys-
tem, but going between the two required some instructional intervention. We suggest 
recording a partial piece of information in formal symbolic form provides a means of 
scaffolding discussion such that a generalization could be anticipated in a way that 
would connect to the formal proof. Similar scaffolding occurred in other lessons such 
as the instructor providing partial diagrams for students to complete to make sense of 
the structural property proofs or engaging students in matching informal conjectures 
to formal statements of lemmas for Lagrange’s Theorem. That is, providing partial 
information can support students in working between formal and informal systems 
while still providing opportunity for students to engage in AMPA.

Reflection on Selecting and Working with Public Records of Student Ideas in a Proof 
Based Setting

Overall, we found the use and comparison of public records to be a useful mechanism 
for focusing students on important structural elements that may have otherwise been 
hidden. In bringing this HLTP to the proof-based settings, we had to be especially  
cognizant of amplifying status issues. In a traditional lecture class, the instructor is  
the primary proof constructor and the proofs students engage with come from them. 
When creating a student-centered environment, there is a danger where a select few  
students generate the proofs which can reinforce status hierarchies. Further, the products of 
group work are not always reflective of all group members. To address these issues, we inten-
tionally modified our group work instructions to better equalize the types of participation  
students engaged in and to increase the likelihood that public products contain ele-
ments from each group member. Our second major modification stemmed from  the 
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continued theme of navigating between informal and formal mathematics: the intro-
duction of partially supplied formal information. With the set of examples illus-
trating the FIT, the initial implementation left these informal representations  
largely in isolation from the formal activity. In the second implementation, the instruc-
tor dedicated time to making one important informal to formal transition: defining the 
isomorphism. We also found this type of move important in the Lagrange Theorem 
task where students were positioned to notice generalities across their examples and 
arrive at key coset lemmas, described informally. The formalization process became a 
major transition between the examples and construction of the proof. Thus, we suggest  
that public records can serve two key roles: highlighting structural differences in proofs  
and promoting attention to structural generalities that can be formalized to anticipate  
continued AMPA in the more formal representation system.

Discussion

In this section, we revisit the set of HLTPs, provide an overview of how they dif-
fered from their K-12 counterparts, and then connect this work to the larger research 
base on inquiry and student-centered teaching in proof-based classrooms.

Expanding HLTPs from the K‑12 Setting to the Proof Setting

Launching complex tasks served to provide common ground on mathematical ter-
minology, promote access to opportunity to richly engage, and anticipate and 
emphasize important mathematical ideas and relationships. These fundamental  
components did not alter in the proof setting. However, in proof-based settings, the  
focus is on the theorem to be proven from a lens of meaning, logic, and antici-
pating proof structure. Further, the language and symbols have a high level  
of lexical complexity. Thus, there was a greater need to promote student attention 
to precision such as the role of quantifiers and making sense of the mathematical 
objects involved. Additionally, when the goal is to engage with the proof, it can be 
particularly challenging to identify key ideas (Raman, 2003) or use concepts and 
definitions (Moore, 1994). Complex task launch can support attention to important 
structures and provide the needed tools in terms of concepts and definitions to sup-
port proof construction, comprehension, and validation. Instructors and designers in  
proof-based classes may want to plan for when and how they will ask for greater pre-
cision around quantifiers and referents. This could involve planning tasks or ques-
tions where students are asked about quantities or are asked to explain what type  
of object is being referenced by certain symbols. Additionally, task launch serves 
not just to support access to mathematically dense symbols and language, but also 
anticipate structures ahead. While the most obvious way to engage students is by 
having them address formal definitions, we also found that supporting students  
in using key ideas towards proof required intentional discussion and linking between 
formal ideas and the informal structures needed. A parallel example might be found 
in analysis where intuition around limits often evokes attention to the independent  
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variable first, whereas the formal definition needed for proving involves addressing 
the dependent variable first (see Swinyard & Larsen, 2012). We suggest instructors 
and designers explicitly consider how closely informal explorations reflect proof 
structures and find appropriate ways to bridge between student intuition and the 
needed structures to produce a proof.

Setting up and managing group work provided opportunity for students to 
engage with the mathematical task, encouraged equity of participation, and posi-
tioned students as contributors to mathematics. The commonalities across these 
instantiations were: a clear proof activity purpose (constructing, comprehend-
ing, validating) and the expectation, via instructor-provided structures, that all 
students participate and communicate about the mathematics. Ultimately, the 
iterations of this HLTPs increased in structure to better combat status issues 
that are often amplified in a setting where constructing a formal proof is valor-
ized. If we compare to the K-12 setting, our structuring contained many similari-
ties with complex instruction (e.g., Cohen, 1994); however, the structure and 
roles were often tied to the formal representation system. Of particular impor-
tance was supporting students traversing between the formal and informal to  
deconstruct existing proofs or to create examples that can be formalized. We sug-
gest that instructors and designers consider not just the quality of a task created, but  
the ways they will engage students such that individual accountability and interde-
pendence are required. The context of proofs can serve to exclude students who do  
not feel as confident with the abstract setting (Weber & Melhuish, 2022). Planning 
might include considering how students can engage productively in ways that are  
not just producing formal proofs, and how roles and responsibilities can be subdi-
vided and assigned in relation to meaningful activity such as leading sense-making  
of parts of existing proofs or developing examples of ideas.

Selecting and working with public records of student ideas positioned students as  
contributors to the mathematical agenda, introduces resources into the common set 
of ideas, arguments, and representations for students to access, and engaged students 
in analyzing, critiquing and noticing important aspects of each other’s mathemat-
ics. In the proof setting, we have focused this HLTP on comparing student proof 
approaches (which can lead to noticing differences in proof structures and argu-
ments) and supporting students in generalizing and connecting to proofs. Specific 
to the proof setting was creating a task where students may viably create different 
proof frameworks (Selden & Selden, 1995). As in the K-12 setting, we found that 
comparison provided an opportunity for students to notice structural features that 
may be otherwise missed – the structure of a proof framework is one of the most 
important new elements in this setting. We also assigned groups different examples 
and intentionally focused on examples where their commonalities could be noticed 
and formalized to develop theorems and proofs. This involved unpacking what  
were either key ideas (Raman, 2003) or particular notation that would be found in 
later proofs (as in the Lagrange and FIT lessons). Students connected the records 
to support later formalization. Instructors and designers may consider what types 
of theorems have multiple approaches that may align themselves with meaningful 
structural comparisons. Additionally, they may plan for students to create examples 
whose comparison can support generalizations and connection to formal ideas. We  
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also suggest consideration to whose ideas make it to a public space, how group prod-
ucts might be jointly created, and to include public records that are not solely formal 
proof productions.

Connecting to the Larger Literature Base in Proof‑Based Courses

We have argued that the primary contribution of this paper is to draw explicit attention to 
HLTPs in a proof-based setting as well as to share lessons we learned about how to imple-
ment them effectively towards participation goals. We oriented this examination using our 
access and engagement heuristics. While we did not identify other design-based research 
articles (or empirical articles more generally) with such focus, we can make connections 
to other literature on curriculum and instruction in the advanced mathematics setting.

If we turn to the complex task launch, we can find practitioner reflections such as 
Reinholz (2020) who shared ways that their graduate analysis course launched tasks to 
include demonstrating the mechanics of the task, offering sets of questions, and pro-
viding instructions on possible next steps. We can also make connections to inquiry-
oriented curricula that are driven by Realistic Mathematics Education. These tasks 
find their groundings in “experientially real” contexts where access is maximized (for 
example, see Larsen’s (2013) trajectory for the guided reinvention of groups). There 
are also components of launching complex tasks in proof-contexts such as in Samkoff  
and Weber’s (2015) proof comprehension strategies where students explore theorems 
and identify important definitions that may anticipate a proof. Additionally, pedagogical 
objects such as transformational records (Rasmussen & Marrongelle, 2006) can serve 
an essential role in supporting students in further mathematical activity. Our analysis  
adds some key insights about how to manage and adjust these kinds of tools to main-
tain the ambitious goals of engaging students in AMPA as well as ensuring all stu-
dents have adequate resources to participate in the classroom activity.

We have found little literature about structuring and managing group work 
beyond the think-pair-share mechanism (see the MAA Instructional Guide, Abell 
et  al., 2018) despite “managing group work” being one of the key roles of the 
instructor in inquiry classes (Ernst et al., 2017). More focus is placed on instructor 
discussion and intervention with small groups (e.g., Remillard, 2014) rather than 
embedded participation structures. Small group work serves an essential role in a 
number of the curriculum-based studies (e.g., Larsen et al., 2013) and intervention 
studies (e.g., Cilli-Turner, 2017). One mechanism that has been discussed is peer 
review (Reinholz & Pilgrim, 2021) or collaborative review (Cilli-Turner, 2017). 
These structures involve students constructing proofs and then sharing them with 
a partner or small group for critique and revision. In the case of Cilli-Turner, she 
expressed the challenge of having students direct comments and questions to each 
other rather than to the instructor. Others have endorsed norms such as Furinghetti 
et al. (2001) stating, “Doing collaborative group work means that students must be 
aware of the fact that everyone can and should contribute to the solution of the prob-
lem, and that sharing and comparing strategies and ideas is much more productive 
than working alone” (p. 232). However, they found that wanting this norm did not 
ensure all small groups worked collaboratively. Thus, we suggest that some of our 
structures for group work (developing expertise on a particular approach, leading 
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discussion on specific proof comprehension questions) may be of use to researchers 
aiming for collaborative proof classrooms that meet this norm.

Working with public records of student proofs and thinking is another well-
documented component of inquiry instruction. For example, IBL often relies on 
students presenting proofs and the class critiquing them (Starbird, 2015). Imple-
menting inquiry-oriented curricula often involves intentional selection of stu-
dent ideas to move along a desired progression (see Andrews-Larson et al., 2019; 
Lockwood et  al., 2013). Curricular supports may include specific student ideas 
to look for and ideas to focus on during this discussion (Lockwood et al., 2013). 
Recent studies on instructors taking up these curricula have pinpointed initial 
shifts in how instructors’ scaffold and select student ideas after teaching the class 
repeatedly (e.g., Andrews-Larson et al., 2019) noting a move away from primarily 
selecting correct responses for discussion. Further, Blanton and Stylianou (2014) 
have illustrated the instructor role in promoting students in reasoning about their 
own and others ideas once ideas are available for discussion. We further this work 
with considerations of whose ideas are made public and ways that student work 
might be leveraged in a formal proof setting such as to compare proof approaches 
or generalize and formalize key conjectures.

Conclusions, Limitations, and Future Research

The biggest lessons we learned from our design project are (1) challenges involved 
in moving between formal and informal representational systems impacted nearly 
every HLTP implementation and (2) equitable participation did not occur by  
attending only to access and opportunity. Overall, the adaptation of the HLTPs to 
the proof-based setting were not substantially different than their K-12 counterparts. 
However, the formal and abstract setting necessitated precision around objects, lan-
guage, and quantification. There was a need for instructor guidance and task fea-
tures to support traversal between the formal and non-formal representation systems 
throughout implementation of all the HLTPs. Otherwise, students often engage in 
the formal representation system without drawing upon their informal explorations 
with examples or diagrams. In terms of participation, we found structuring group 
work to distribute responsibility and providing opportunity beyond just formal proof 
production as essential. As design researchers make shifts from interview setting to 
classrooms, we suggest they consider (1) ways that their tasks can be partnered with 
initial structuring to allow for more equitable participation and (2) ways to mitigate a 
few students’ public records being centered via expansion in their creation or types.

Finally, we note the HLTPs cannot be disentangled from the context and nature of 
the tasks in this project. Thus, while we contribute instructional elements that we see as 
generalizable, many may not be usable in courses that do not share the common proof 
construction, validation, and construction objectives. Future research may consider how 
other tasks and subject areas may elicit different elements of the HLTPs in proof-based 
settings. Additionally, while we attended broadly to access and engagement in activity, 
we did not take a critical lens to our analyses. Further research could consider how stu-
dent identity may be reflected in whose activity is elicited and valorized.
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Appendix

Lesson 1: Structural Property 
Task

Lesson 2: Lagrange’s Theorem 
Task

Lesson 3: First Isomorphism  
Theorem Task

Primary Proof  
Activity

Proof Validating Proof Constructing Proof Comprehending

Proof Learning Role of conclusion in proof 
framework

Using a diagram exploration to 
identify a key idea

Attending to global and local  
aspects when reading a  
proof

Outline of Lesson  
Structure

Opening Discussion
• Public record of assumptions 

and conclusion
• Discuss key definitions
Discussion of Proof  

Approaches in Small  
Groups

• Develop expertise around  
one of two student proofs

• Explain proof to partner  
who is prompted to state one 
thing that makes sense and  
one question

Public Discussion of Two 
Approaches

• Presentation
• Identifying similarities and  

differences (think-pair-share)
• Public Record of similarities 

and differences
Proof and Statement Analysis
• Conjecture what assumptions 

are needed based on the  
existing proofs

• Public Record of conjectured 
statements (with varying 
properties: 1–1 and onto)

• Testing statements use proofs 
and examples to determine 
what properties are needed

Counterexample to Identify  
the Necessity of Onto  
(Visual Representation)

• Function diagram discussion 
showing the role of onto

Summary and Conclusion
• Finalizing of revised  

statement (onto, but not 1–1)
• Discussion of patching the 

proof that did not use onto
• Discussion of the role of  

conclusion in structuring  
proofs (proof framework)

Opening Discussion and  
Exploration

• Exploring examples groups  
and the order of their  
subgroups to generate a  
conjecture (in small groups)

• Creating a public record of  
conjectures from different  
groups

• Connecting conjecture to  
formal Lagrange Statement

• Formally defining divisibility  
and exploring the meaning  
of “multiplication” on  
boards and coming to class 
consensus (to anticipate proof 
structure)

Creating Cosets in Small  
Groups

• Each group works with a  
different group (and subgroup)  
to create cosets in a form that  
can be reasoned with  
diagrammatically

Conjecture Discussion
• Discussion of noticings and  

conjectures about the structure  
of the cosets to arrive at  
key lemmas for the proof of 
Lagrange’s Theorem

Matching Class Lemmas to  
their Formalizations in  
Small Groups

• A set of six formal statements  
to identify as the translation of  
an informal lemma or a tool to 
prove one of the lemmas

Proving Lagrange’s Theorem
• Small group and whole class  

discussion of structuring 
Lagrange’s Proof using the 
lemmas

Summary and Conclusion
• Discussing the role of the key  

idea from the coset diagram 
examples

• Wrap-up on the implications  
of Lagrange’s Theorem

Opening Discussion
• Discussion of key concepts  

and definitions in the 
theorem

Small Group Exploration  
of Specific Examples

• Each small group works  
at board space to connect  
the theorem to a specific  
example using a function  
diagram (and assigned  
roles)

Class Discussion of Defining  
the Isomorphism Map

• Identifying a map in  
symbolic form that will  
describe the input (cosets)  
and outputs (image of the  
coset representative) that  
is consistent across the  
examples

Discussion (small group  
and whole class) of Proof  
Structure

• Identifying what needs to  
be proven

• Subdividing the proof to  
find the sections of what  
needs to be proven

Making sense of a  
subsection of a proof

• Each small group is  
responsible for one of four  
sections. Each member of  
a group has a question for  
leading discussion

Class Presentations
• A representative from each  

small group explains their  
section to the class

Summary and Conclusion
• Summarizing the proof at  

a high level
• Discussing the practice of  

proof comprehension
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