Let R be a Noetherian ring and let $(*) \ 0 \to A \to B \to C \to 0$ be a short exact sequence of modules of finite length over R. We show that if $B \cong A \oplus C$ then (*) splits.

Since $B \cong A \oplus C$, we have that $\operatorname{Hom}_R(C, B) \cong \operatorname{Hom}_R(C, A) \oplus \operatorname{Hom}_R(C, C)$. Hence, $\ell(\operatorname{Hom}_R(C, B)) = \ell(\operatorname{Hom}_R(C, A)) + \ell(\operatorname{Hom}_R(C, C))$, where ℓ denotes length. Write $f: B \to C$ for the map in (*). Apply $\operatorname{Hom}_R(C, _)$ to the sequence (*). From the left exactness of $\operatorname{Hom}_R(C, _)$ we obtain that the sequence

 $0 \to \operatorname{Hom}_R(C, A) \to \operatorname{Hom}_R(C, B) \to \operatorname{Hom}_R(C, C)$

is exact, where the map $\operatorname{Hom}(C, f) = f_*$ is given by $g \mapsto f \circ g$. Let N denote the cokernel of f_* , which evidently has finite length. It follows that

 $0 \to \operatorname{Hom}_R(C, A) \to \operatorname{Hom}_R(C, B) \to \operatorname{Hom}_R(C, C) \to N \to 0$

is exact, and, hence, that $\ell(N) = \ell(\operatorname{Hom}_R(C, C)) - \ell(\operatorname{Hom}_R(C, B)) + \ell(\operatorname{Hom}_R(C, A)) = 0$, so that N = 0. Hence, $f_* : \operatorname{Hom}_R(C, B) \to \operatorname{Hom}_R(C, C)$ is surjective, which shows that the sequence (*) splits. \Box