Math 614, Fall 2008

Problem Set #5

Due: Monday, December 15

1. Let M and N be modules of finite length over the Noetherian ring R. Show that $M \otimes_R N$ and $\operatorname{Hom}_R(M, N)$ have finite length. Also show that a descending sequence of cosets $m_n + Q_n$ of submodules $Q_n \subseteq M$ is eventually constant.

- **2.** Let $M \neq 0$ be finitely generated over a Noetherian ring R with Ass $(M) = \{P_1, \ldots, P_n\}$.
- (a) Let P be maximal in Ass (M). Let $N = \operatorname{Ann}_M P$. Prove that $N \neq 0$ is a torsion-free module over the domain R/P, and Ass $(M/N) \subseteq \{P_1, \ldots, P_n\}$.
- (b) Prove that M has a finite filtration in which each factor N is a nonzero torsion-free module that is killed one of the P_i . Moreover, show that every P_i occurs.
- **3.** Let R, M be as in **2.**. Let S be a Noetherian R-flat algebra. Show that $\mathrm{Ass}_S(S \otimes_R M) = \bigcup_{i=1}^n \mathrm{Ass}_S(S/P_iS)$. Conclude that If $S = R[x_1, \ldots, x_k]$ is polynomial over R, then $\mathrm{Ass}_S(S \otimes_R M) = \{PS : P \in \mathrm{Ass}_R(M)\}$.
- **4.** (a) Let m be a maximal ideal of a ring R. Let $\mathcal{M} = mR_m$. Show that $\widehat{R}^m \cong \widehat{R_m}^{\mathcal{M}}$.
- (b) Let S = K[x, y] be the polynomial ring in two variables over a field K. Let T = K[[x, y]] be its (x, y)-adic completion. Let $f = y^2 x^2 x^3$. Show that R = K[x, y]/fS is a domain but that its completion T/fT with respect to the maximal ideal (x, y)R is not.
- (c) Let $f = \sum_{n=1}^{\infty} x^{n!} \in K[[x]]$, the formal power series ring in one variable over the field K. Show that that f is transcendental over K[x].
- **5.** Let R = K[x,y] be a polynomial ring in two variables over K and let S = K[[x,y]] be its (x,y)-adic completion. Let $g \in xK[[x]] \subseteq S$ be transcendental over K[x], and suppose $g = \sum_{t=1}^{\infty} c_t x^t$ with the $c_t \in K$. Let $g_n = \sum_{t=1}^{n-1} c_t x^t$. Let $I_n = (y g_n, x^n)R$, and note that $I_n S = (g, x^n S)$. Prove that $\bigcap_n I_n S \neq (\bigcap_n I_n)S$. (Show that the left hand side is (y-g)S, and that $(y-g)S \cap R = (0)$, which implies that the right hand side is (0).)
- **6.** Let $\{A_n\}_{n\in\mathbb{N}}$ be an inverse limit system over the nonnegative integers \mathbb{N} , where the $A_n \neq \emptyset$ are sets, groups, rings, or modules over a fixed ring R.
- (a) Show that if the maps $A_{n+1} \to A_n$ are onto then $L = \lim_{n \to \infty} A_n$ is not empty.
- (b) If, for each fixed n, $\text{Im}(A_N \to A_n)$ is constant for all $N \gg 0$, show $L \neq \emptyset$.
- (c) Let $\{A_n\}_{n\in\mathbb{N}}$, $\{B_n\}_{n\in\mathbb{N}}$, and $\{C_n\}_{n\in\mathbb{N}}$ be inverse limit systems of modules such that the for all n one has an exact sequence $A_n \to B_n \to C_n$. Suppose also that for all n the

$$A_{n+1} \longrightarrow B_{n+1} \longrightarrow C_{n+1}$$

diagram \downarrow \downarrow commutes. Suppose that all the modules have $A_n \longrightarrow B_n \longrightarrow C_n$

finite length. Prove that $\lim_{n} A_n \to \lim_{n} B_n \to \lim_{n} C_n$ is exact.

EXTRA CREDIT Let (*) $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of modules of finite length over the Noetherian ring R. Suppose that $B \cong A \oplus C$. Prove (*) is split.