1. Let $f: R \rightarrow S$ be a ring homomorphism, V a multiplicative system in R, and W the image of V in S.
(a) Explain carefully why there is a unique induced ring homomorphism $g: V^{-1} R \rightarrow W^{-1} S$ such that $g(r / 1)=f(r) / 1$ for all $r \in R$.
(b) Show that if S is module-finite over R (respectively, integral), then $W^{-1} S$ is modulefinite (respectively, integral) over $V^{-1} R$.
2. Suppose in 1. (a) that $R \subseteq S$ is a subring (and then $W=V$). Let T be the integral closure of R in S. Show that $V^{-1} R \rightarrow V^{-1} S$ is injective, and that the integral closure of its image in $V^{-1} S$ is $V^{-1} T$.
3. (a) Which elements in the polynomial ring $K[x, y, z]$ over the field K are integral over $K\left[x^{7}, y^{11}, z^{13}\right]$? Explain your answer.
(b) Let S be the ring of elements in $\mathbb{Q}[\sqrt{11}]$ integral over \mathbb{Z}. Show that there is an element $s \in S$ such that $S=\mathbb{Z}+\mathbb{Z} s$. Give s explicitly.
4. Let $A \subseteq S$ be rings and let $f, g \in S[x]$ be monic polynomials. Let R be the ring generated over A by the coefficients of the product polynomial $f g$. Show that if S is a domain, then every coefficient of f and of g is integral over R. [Suggestion: Enlarge S to an algebraically closed field L. Explain why all the roots of $f g$ are integral over R. Express the coefficients of f and of g in terms of these roots.]
5. Prove the statement in problem 4. without the assumption that S is a domain.
6. Suppose that R is a principal ideal domain and that $R[z]$, the polynomial ring in one variable over R, is isomorphic to $S=K[x, y]$, the polynomial ring in two variables over a field K. Prove that $R \cong K[u]$, a polynomial ring in one variable over K. [Identify R and z with their images in S. Let u be a generator of $m \cap R$, where $m=(x, y) S$. One approach is to prove that every $G \in R$ is in $K[u]$ by induction on the degree of G considered as a polynomial in S.]
