- **1.** Let $\{S_i : i \in I\}$ be a possibly infinite family of normal domains, all of which are subrings of the integral domain S. Prove that $\bigcap_{i \in I} S_i$ is normal.
- **2.** Is the ring of continuous real-valued functions on the closed unit interval a Noetherian ring? Prove your answer.
- **3.** (a) Show: if $f: X' \to X$ is continuous with X' irreducible then f(X') is irreducible.
- (b) Let K be an algebraically closed field, and let $0 < t \le r \le s \in \mathbb{N}$. Identify the set of $r \times s$ matrices over K (they correspond to K-linear maps $K^s \to K^r$) with $K^{rs} = \mathbb{A}_K^{rs}$. Then X_t , the subset of matrices of rank at most t, is a closed algebraic set, defined by the vanishing of size t+1 minors.
- (1) Show that an $r \times s$ matrix over K has rank $\leq t$ iff it is the product of an $r \times t$ matrix and a $t \times s$ matrix over K. (Suggestion: rank $M \leq t$ iff Im $M \subseteq$ some t-dimensional subspace of K^r .)
- (2) Show that there is a morphism of $\mathbb{A}_K^{rt+ts} = \mathbb{A}_K^{rt} \times \mathbb{A}_K^{ts}$ onto X_t .
- (3) Show that X_t is irreducible. What does this imply about the ideal generated, in $K[x_{ij}: 1 \le i \le r, 1 \le j \le s]$, by the size t minors of an $r \times s$ matrix (x_{ij}) with indeterminate entries?
- **4.** Let $R \subseteq S$ be rings and suppose that there is an R-linear map $\phi: S \to R$ such that $\phi(r) = r$ for all $r \in R$. (We showed in class that this implies $IS \cap R = I$ for all I in R.) We shall say that R is a direct summand of S in this situation.
- (a) Show that if S is Noetherian then so is R.
- (b) Show that $R[[x_1, \ldots, x_n]]$ is a direct summand of $S[[x_1, \ldots, x_n]]$.
- (c) Let R_i be an increasing sequence of subrings of the Noetherian ring S such that every R_i is a direct summand of S. Prove that the union $\bigcup_{i=1}^{\infty} R_i$ is Noetherian.
- (d) Let K_i be an increasing sequence of subfields of a field L. Show that the ring $\bigcup_{i=1}^{\infty} K_i[[x_1, \ldots, x_n]]$ is Noetherian.
- **5.** Let R = K[x, y] be a polynomial ring in two variables, and let m = (x, y)R. Show that the element $\epsilon = x \otimes y y \otimes x$ in $m \otimes_R m$ is not 0 but is killed by m, and show that it spans the kernel of the surjection $m \otimes_R m \to m^2$ induced by the bilinear map $m \times m \to m^2$ sending (u, v) to uv.
- **6.** Let $K \subseteq L$ be fields, K algebraically closed, and let D be a domain that is a K-algebra. Prove that $L \otimes_K D$ is a domain. (Suggestion: Let b_i be a K-basis for D over K, which will also give an L-basis for $L \otimes_K D$. For all i, j one has, uniquely, $b_i b_j = \sum_k c_{ijk} b_k$ with $c_{ijk} \in K$: all but finitely many c_{ijk} are 0. Think of the problem of finding two nonzero elements u, v of $L \otimes_K D$ whose product is 0 as an equational problem, using indeterminate coefficients to write u, v in terms of specific b_i . The condition that a coefficient $U_i \neq 0$ can be expressed by an auxiliary equation $U_i Z = 1$. **5.**(a) of Problem Set #3 may be helpful.)