Math 614, Fall 2010 Due: Friday, October 1 Problem Set #1

Throughout, R is a commutative ring with identity, K is a field and K[x], K[x, y] are polynomial rings over K. If M is an R-module, $M^* = \text{Hom}_R(M, R)$.

1. (a). Let $f \in K[x] = R$ have degree $d \ge 1$. You may assume that f is transcendental over K, so that $A = K[f] \subseteq K[x]$ is isomorphic to a polynomial ring in one variable over K. Prove that every element of R is uniquely expressible in the form $a_0 + a_1x + \cdots + a_{d-1}x^{d-1}$, where every $a_j \in A$. In particular, $R \cong A^d$ as an A-module.

(b) Let B denote any subring of R containing K, and let I be an ideal of B. Show that B is finitely generated as a K-algebra. Show also that if B contains a polynomial of degree $d \ge 1$, then every ideal of B can be generated by d or fewer elements.

2. (a) Let *h* be a positive integer. Prove that x^{9h} , $x^{6h+1} + x^{3h+2}$, and $x^{3h} + x$ generate K[x] as a ring over *K*.

(b) Consider the subring $T = K[x^3, x^2 + x] \subseteq K[x] = R$. Show that R/T is a nonzero finite-dimensional K-vector space, and find a basis for it over K. In particular, $T \neq R$. (c) Show that x is in the field of fractions of T.

3. Let R = K[x, y]. Let *a* be a positive real number. Let $S_a \subseteq R$ be the subring of *R* spanned as a *K*-vector space by all monomials $x^m y^n$, $m, n \in \mathbb{N}$, such that m > an. Show that if 0 < a < b, then $S_b \subset S_a$, and this containment is strict. Show that for all a > 0, S_a contains an infinite strictly increasing chain of ideals.

4. Let R be an integral domain with fraction field \mathcal{F} , and let $(0) \neq I \subseteq R$ be an ideal.

(a) Let $H = \{f \in \mathcal{F} : fI \subseteq R\}$. Show that $H \cong \operatorname{Hom}_R(I, R) = I^*$.

(b) Let $R = K[x^2, x^3] \subseteq K[x]$. Let I be the ideal $(x^2, x^3)R \subseteq R$. Is the natural map $I \to I^{**}$ an isomorphism?

(c) Let R be a unique factorization domain and let I be an ideal of R. Suppose that I contains relatively prime elements u, v. Prove that $I^* \cong R$ and, hence, $I^{**} \cong R$.

5. Let P and Q be prime ideals of R. Show that P and Q have disjoint open neighborhoods if and only if there is no prime ideal P_0 that is contained in both P and Q. ("Only if" is the easier part. Note that $\{ab : A \in R \setminus P, b \in R \setminus Q\}$ is a multiplicative system in R.)

6. Let C be a category, and X, Y be objects of C. A morphism $f: X \to Y$ is called an *epimorphism* if for all objects Z and $g, h: Y \to Z$, whenever $g \circ f = h \circ f$, then g = h. (In the categories of sets or modules over a ring R, an epimorphism can be shown to be the same thing as a surjective morphism. In the category of Hausforff spaces, if $f: X \to Y$ and f(X) is dense in Y, then f is an epimorphism.) Let $f: R \to S$ be a ring homomorphism, and suppose that every element of S has the form f(r)/f(u), where $r, u \in R$ and f(u) is invertible in S. (E.g., one may take $R = \mathbb{Z}$ and $S = \mathbb{Z}[1/2] = \{r/2^h : r \in \mathbb{Z}, h \in \mathbb{N}\}$.) Prove that f is an epimorphism in the category of rings.

EXTRA CREDIT 1 Suppose that z is an indeterminate over R and that $R[z] \cong K[x, y]$. Prove that R is isomorphic to the polynomial ring in one variable over K.