Math 614, Fall 2010 Due: Friday, November 19

Problem Set #4

1. Let u and v be relatively prime elements in the UFD R, and let W be an R-module. Let J = (u, v)R, assume $J \neq R$, and let $f : R^2 \twoheadrightarrow J$ be such that $f(r_1, r_2) = r_1 u + r_2 v$.

(a) Show that the kernel of f is the cyclic module generated by (v, -u).

(b) Show that $W \otimes_R J \cong (W \oplus W) / \{(vw, -uw) : w \in W\}.$

(c) Show that $W \otimes_R J \to W \otimes_R R \cong W$ is injective if and only if whenver $w_1, w_2 \in W$ are such that $uw_1 = vw_2$, there exists $w \in W$ such that $w_1 = vw$ and $w_2 = uw$.

(d) Prove that $J \otimes_R J \to J$ with $j \otimes j' \mapsto jj'$ is not injective. Hence, J is not R-flat.

2. Let *I* be a directed partially ordered set, and let $\{M_i\}_{i \in I}$ be a direct limit system of *R*-modules. Let $M = \lim_{i \to I} M_i$ be the direct limit.

(a) Fix $i \in I$. Show that the modules $N_{ij} = \text{Ker}(M_i \to M_j)$ form a directed union indexed by $\{j \in I : j \ge i\}$.

(b) Let $N_i = \bigcup_{j>i} N_{ij}$. Show that $N_i = \text{Ker}(M_i \to M)$ for all $i \in I$.

(c) Show that the modules $M_i = M_i/N_i$ form a direct limit system indexed by I with maps induced by the maps $M_i \to M_j$, and that the map $\overline{M}_i \to \overline{M}_j$ is injective for $j \ge i$. Hence, M is the directed union of the isomorphic images of the \overline{M}_i in M.

3. Let M be a Noetherian R-module and let let $f: M \to M$ be surjective. Prove that f is an isomorphism.

Extra Credit 6 Let M be a finitely generated R-module and let $f : M \to M$ be surjective. Prove that f is an isomorphism.

4. Let R be a principal ideal domain. Let $a, b \in R - \{0\}$ with GCD(a, b) = d.

(a) Show that $(R/aR) \otimes_R (R/bR) \cong R/dR$.

(b) Show also that $\operatorname{Hom}_R(R/aR, R/bR) \cong R/dR$.

(c) Prove that for any two finitely generated torsion modules M, N over R, $M \otimes_R N \cong$ Hom_R(M, N). (This isomorphism is *not* natural.)

5. Let R be a reduced ring of Krull dimension 0. Prove that for every prime ideal P of R, R_P is a field, and that every R-module is flat.

6. Recall that in any category C, a morphism $f: X \to Y$ is an *epimorphism* if whenever $g, h: Y \to Z$ and $g \circ f = h \circ f$, then g = h. Let T, S be *R*-algebras.

(a) Show that $R \to S$ is an epimorphism of rings if and only if the map $S \otimes_R S \to S$ induced by the *R*-bilinear map $S \times S \to S$ such that $(s_1, s_2) \mapsto s_1 s_2$ is an isomorphism.

(b) Prove that if R is a field, an epimorphism $R \to S$ is an isomorphism or else S = 0.

(c) Prove that if $R \to S$ is an epimorphism, then so is $T = T \otimes_R R \to T \otimes_R S$.

(d) Prove that if $R \to S$ is an epimorphism, P is prime in R, and $\kappa_P = R_P/PR_P$, then $\kappa_P \otimes_R S$ (the scheme-theoretic fiber), as a κ_P -algebra, is κ_P or is 0.